• Title/Summary/Keyword: wheat(Triticum aestivum L.)

Search Result 95, Processing Time 0.023 seconds

Cloning of Low-molecular-weight Glutenin Subunit Genes and Identification of their Protein Products in Common Wheat (Triticum aestivum L.) (보통 밀에서 저분자글루테닌 유전자 클로닝 및 단백질 동정)

  • Lee, Jong-Yeol;Kim, Yeong-Tae;Kim, Bo-Mi;Lee, Jung-Hye;Lim, Sun-Hyung;Ha, Sun-Hwa;Ahn, Sang-Nag;Nam, Myung-Hee;Kim, Young-Mi
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.547-554
    • /
    • 2010
  • Low-molecular-weight glutenin subunit (LMW-GS) in common wheat (Triticum aestivum L.) is important for quality processing of bread and noodles. The objectives of this study were to clarify the composition of LMW-GSs and to identify their corresponding proteins. Using LMW-GS specific primers we cloned and characterized 43 LMW-GS genes in the wheat cultivar 'Jokyoung'. Some of these genes contain polypeptides different in size due to the presence of various deletions or insertions within repetitive and glutamine-rich domains. The comparison of deduced amino acid sequence of the LMW-GS genes in Jokyoung with that of 12 groups LMW-GSs of wheat cultivar Norin 61 showed that the deduced amino acid sequences were nearly the same to LMW-GS groups of 1, 2, 3/4, 5, 7, 10 and 11. All LMW-GS genes contain eight cysteine residues, which are conserved among all of the typical LMW-GS sequences. The relative positions of cysteine residues are also conserved, except those of the first and seventh. Based on phylogenetic analysis, the 43 sequences with the same N-terminal and C-terminal amino acid sequences were clustered in the same group. To identify the proteins containing the corresponding amino acid sequences, we determined the N-terminal amino acid sequence of 7 spots of LMW-GSs of Jokyoung separated by two-dimensional gel electrophoresis (2DE). Of them, Glu-B3 (LMW-m and LMW-s) and Glu-D3 (LMW-m) were detected in two and three spots, respectively and the others were not clear. Collectively, we classified diverse LMW-GSs and identified their corresponding protein products. These results will be helpful in breeding programs for improvement of wheat flour quality.

Studies on the Induction of Transformation in Cereal Plane V. Transformation of Wheat by Electroporation (곡물류의 형질전환 유도에 관한 연구 V. Electroporation에 의한 밀의 형질전환)

  • Song, Jung-Won;Jung, Byung-Kyun;Bae, Dong-Kyu;Im, Hyung-Tak;Nam, Back-Hee;Jung, Hyun-Sook;Hwang, Baek
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.4
    • /
    • pp.187-192
    • /
    • 1994
  • Wheat (Triticum aestium L.cv Cho-Kwang) explants were transformed by electrporation. Excised root segments were elechoporated with plasmid DNA of pBI121 and transferred to medium containing 300 mg/L kanamycin. Transformed calli formed within 5-7 days of culture and were selected from electroporated tissue on medium containing kanamycin after 4 weeks. The highest transformation frequency was obtained after electroporation with a pulse of 200 V/800 uF and calli formed at frequencies up to 2.5%. GUS ($\beta$-glucuronidase) assay and dot blot analysis showed that the foreign gene was capable of expressing in root explants subjected to electroporation and calli derived from the explants..

  • PDF

Effects of Maturity Stages on the Nutritive Composition and Silage Quality of Whole Crop Wheat

  • Xie, Z.L.;Zhang, T.F.;Chen, X.Z.;Li, G.D.;Zhang, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1374-1380
    • /
    • 2012
  • The changes in yields and nutritive composition of whole crop wheat (Triticum aestivum L.) during maturation and effects of maturity stage and lactic acid bacteria (LAB) inoculants on the fermentation quality and aerobic stability were investigated under laboratory conditions. Whole crop wheat harvested at three maturation stages: flowering stage, milk stage and dough stage. Two strains of LAB (Lactobacillus plantarum: LAB1, Lactobacillus parafarraqinis: LAB2) were inoculated for wheat ensiling at $1.0{\times}10^5$ colony forming units per gram of fresh forage. The results indicated that wheat had higher dry matter yields at the milk and dough stages. The highest water-soluble carbohydrates content, crude protein yields and relative feed value of wheat were obtained at the milk stage, while contents of crude fiber, neutral detergent fiber and acid detergent fiber were the lowest, compared to the flowering and dough stages. Lactic acid contents of wheat silage significantly decreased with maturity. Inoculating homofermentative LAB1 markedly reduced pH values and ammonia-nitrogen ($NH_3$-N) content (p<0.05) of silages at three maturity stages compared with their corresponding controls. Inoculating heterofermentative LAB2 did not significantly influence pH values, whereas it notably lowered lactic acid and $NH_3$-N content (p<0.05) and effectively improved the aerobic stability of silages. In conclusion, considering both yields and nutritive value, whole crop wheat as forage should be harvested at the milk stage. Inoculating LAB1 improved the fermentation quality, while inoculating LAB2 enhanced the aerobic stability of wheat silages at different maturity stages.

Growth and Quality Characteristics in Response to Elevated Temperature during the Growing Season of Korean Bread Wheat

  • Chuloh Cho;Han-Yong Jeong;Yulim Kim;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Ji-Young Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.124-124
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is the major staple foods and is in increasing demand in the world. The elevated temperature due to changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15~25℃, it is necessary to study the physiological characteristic of wheat according to the elevated temperature. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in a temperature gradient tunnel (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions, i.e. TO control (near ambient temperature), T1 control+1℃, T2 control+2℃, T3 control+3℃. The period from sowing to heading stage has accelerated, while the growth properties including culm length, spike length and number of spike, have not changed by elevated temperature. On the contrary, the number of grains per spike and grain yield was reduced under T3 condition compared with that of control condition. In addition, the. The grain filling rate and grain maturity also accelerated by elevated temperature (T3). The elevating temperature has led to increasing protein and gluten contents, whereas causing reduction of total starch contents. These results are consistent with reduced expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during late grain filling period. Taken together, our results suggest that the elevated temperature (T3) leads to reduction in grain yield regulating number of grains/spike, whereas increasing the gluten content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. Our results should be provide a useful physiological information for the heat stress response of wheat.

  • PDF

Effect of Light Emitting Diode Irradiation on Functional Properties of a Purple-Colored Wheat 'Arriheuk' Wheatgrass

  • Dea-Wook Kim;Kyeong Hoon Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.184-184
    • /
    • 2022
  • This study was aimed to evaluate the antioxidant activity and bioactive property of extracts from a purple-colored wheat variety 'Arriheuk' (Triticum aestivum L.) wheatgrass, affected by light emitting diode irradiation (LED). The wheatgrass was cultivated for 10 days after sowing in a growth chamber under the following LED conditions: R1B1 (Red:Blue = 1:1), R7B3 (Red:Blue = 7:3), and R3B7 (Red:Blue = 3:7). We examined antioxidant activity of the hot water extracts of wheatgrass using DPPH and ABTS free radicals scavenging assays. At the concentration of 10,000 ㎍/ml, the extract from R1B1 showed the highest DPPH free radical scavenging activity(79.29%), but its ABTS free radical scavenging activity was the lowest(32.0%). To evaluate bioactive property of the wheatgrass, we examined the change of natural killer (NK) cell activity affected by the wheatgrass extracts in vitro. At the concentration of 500㎍/ml, NK cell activity was most highly enhanced by the extract from R1B1(181.6%), and the activity was 176.1% (R7B3) and 144.6%(R3B7), respectively. These results suggest that the functional property of 'Arriheuk' wheatgrass would be enhanced by LED irradiation condition.

  • PDF

Varietal Difference of Immature Spike Number and Its Relationship with Other Characters in Barley and Wheat (보리ㆍ밀 미열 이삭의 품종간 차이와 주요형질과의 상관)

  • 김흥배
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.245-249
    • /
    • 1995
  • The number of immature spikes of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L) were studied to determine if there could be existed the significant difference among 5 varieties of barley and wheat each. Heritability of 6 characters including the number of immature spikes have also calculated. Correlation between the immature spikes and 5 other characters were also investigated. There were significant difference among 5 varieties of barley and wheat in the number of immature spikes. Heritability estimated were very high in case of number of immature spikes of barley and that of wheat was high. There were highly significant correlation between the number of immature spikes of barley and number of internode and significant correlation between the number of immature spikes and flag leaf. However, in wheat no correlations were found among the 5 characters in wheat and between the number of immature spikes and number of internode were negative.

  • PDF

Effects of Nitrogen Application Rate on the Yields, Nutritive Value and Silage Fermentation Quality of Whole-crop Wheat

  • Li, C.J.;Xu, Z.H.;Dong, Z.X.;Shi, S.L.;Zhang, J.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1129-1135
    • /
    • 2016
  • Whole-crop wheat (Triticum aestivum L.) as forage has been extensively used in the world. In this study, the effects of N application rates on the yields, nutritive value and silage quality were investigated. The N application rates were 0, 75, 150, 225, and 300 kg/ha. The research results indicated that the dry matter yield of whole-crop wheat increased significantly with increasing N rate up to 150 kg/ha, and then leveled off. The crude protein content and in vitro dry matter digestibility of whole-crop wheat increased significantly with increasing N up to 225 kg/ha, while they no longer increased at N 300 kg/ha. On the contrary, the content of various fibers tended to decrease with the increase of N application. The content of lactic acid, acetic acid and propionic acid in silages increased with the increase of N rate (p<0.05). The ammonia-N content of silages with higher N application rates (${\geq}225kg/ha$) was significantly higher than that with lower N application rates (${\leq}150kg/ha$). Whole-crop wheat applied with high levels of N accumulated more nitrate-N. In conclusion, taking account of yields, nutritive value, silage quality and safety, the optimum N application to whole-crop wheat should be about 150 kg/ha at the present experiment conditions.

Effect of Integrated Use of Organic and Fertilizer N on Soil Microbial Biomass Dynamics, Turnover and Activity of Enzymes under Legume-cereal System in a Swell-shrink (Typic Haplustert) Soil.

  • Manna, M.C.;Swarup, A.
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.375-381
    • /
    • 2000
  • Quantifying the changes of soil microbial biomass and activity of enzymes are important to understand the dynamics of active soil C and N pools. The dynamics of soil microbial biomass C and N and the activity of enzymes over entire growth period of soybean-(Glycine max (L) Merr.)-wheat (Triticum aestivum L.) sequence on a Typic Haplustert as influenced by organic manure and inorganic fertilizer N were investigated in a field experiment. The application of farmyard manure at 4 to 16 $Mg{\cdot}ha^{-1}\;y^{-1}r^{-1}$ along with fertilizer nitrogen at 50 or 180 $kg{\cdot}ha^{-1}$ increased the mean soil microbial biomass from 1.12 to 2.05 fold over unmanured soils under soybean-wheat system. Irrespective of organic and chemical fertilizer N application, the soil microbial biomass was maximum during the first two months at active growing stage of the crops and subsequently declined with crop maturity. The mean annual microbial activity was significantly increased when manure and chemical fertilizer at 8 $Mg{\cdot}ha^{-1}$ and 50/180 N $kg{\cdot}ha^{-1}$, respectively were applied. The C turnover rate decreased by 47 to 72 % when the level of farmyard manure was increased from 4 to 8 and 16 $Mg{\cdot}ha^{-1}$. There were significant correlations between biomass C, available N, dehydrogenase, phosphatase and yield of the crops.

  • PDF

Explicating morphophysiological and biochemical responses of wheat grown under acidic medium: Insight into to the antioxidant defense and glyoxalase systems

  • Bhuyan, MHM Borhannuddin;Hasanuzzaman, Mirza;Al Mahmud, Jubayer;Hossain, Md. Shahdat;Alam, Mazhar Ul;Fujita, Masayuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.236-236
    • /
    • 2017
  • Low soil pH causes from $H^+$ rhizotoxicity results in nutrients unavailability in the growing media, inhibits plant growth, development and reduces crop yields. The present study was carried out to reveal morpholophysiological and biochemical responses of wheat (Triticum aestivum L.) to acidity stress. Four wheat varieties viz. BARI Wheat-21, BARI Wheat-25, BARI Wheat-26 and BARI Wheat-30 were used in the study. Eight-day-old seedlings were exposed to different pH levels (3.5, 4.5, 5.5 and 6.5) of growing media. Acidity stress at any level reduced biomass, water, and chlorophyll contents in all the varieties; whereas BARI Wheat-26 showed the least damage. $H^+$ rhizotoxicity also caused oxidative stress through excess production of reactive oxygen species and methylglyoxal which increase lipid peroxidation in all the varieties but the lowest oxidative damage was observed in BARI Wheat-26 due to better performance of the antioxidant defense and glyoxalase systems. Considering the growth, physiological and biochemical attributes BARI Wheat-26 may be considered as acidity stress tolerant, among the variety examined.

  • PDF