• Title/Summary/Keyword: wet surface

Search Result 1,210, Processing Time 0.03 seconds

Predicting Surface Runoff and Soil Erosion from an Unpaved Forest Road Using Rainfall Simulation (인공강우실험에 의한 임도노면의 지표유출량 및 토양유실량 평가)

  • Eu, Song;Li, Qiwen;Lee, Eun Jai;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.13-22
    • /
    • 2015
  • Unpaved forest roads are common accessways in mountain areas being used for forestry purposes. The presence of forest roads produces large volumes of surface runoff and sediment yield due to changes in soil properties and hillslope profile. Rainfall simulation experiments were conducted to estimate the impacts of above-ground vegetation and antecedent soil water condition on hydrology and sediment processes. A total of 9 small plots($1m{\times}0.5m$) were installed to represent different road surface conditions: no-vegetation(3 plots), vegetated surface(3 plots), and cleared vegetation surface(3 plots). Experiments were carried out on dry, wet, and very wet soil moisture conditions for each plot. Above ground parts of vegetation on road surface influenced significantly on surface runoff. Runoff from no-vegetation roads(39.24L) was greater than that from vegetated(25.05L), while cleared-vegetation condition is similar to no-vegetation roads(39.72L). Runoff rate responded in a similar way to runoff volume. Soil erosion was also controlled by land cover, but the magnitude is little than that of surface runoff. Even though slight differences among antecedent soil moisture conditions were found on both runoff and soil erosion, runoff rate and soil losses were increased in very wet condition, followed by wet condition. The experiments suggest that vegetation cover on forest road surface seems most effective way to reduce surface runoff and soil erosion during storm periods.

Multi-mode Planar Waveguide Fabricated by a (110) Silicon Hard Master

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1106-1110
    • /
    • 2005
  • We fabricated (110) silicon hard master by using anisotropic wet etching for embossing. The etching chemical for the silicon wafer was a TMAH $25\%$ solution. The anisotropic wet etching produces a smooth sidewall surface and the surface roughness of the fabricated master is about 3 nm. After spin coating an organic-inorganic sol-gel hybrid material on a silicon substrate, we employed hot embossing technique operated at a low pressure and temperature to form patterns on the silicon substrate by using the fabricated master. We successfully fabricated the multi-mode planar optical waveguides showing low propagation loss of 0.4 dB/cm. The surface roughness of embossed patterns was uniform for more than 10 times of the embossing processes with a single hydrophobic surface treatment of the silicon hard master.

Synthetic of Magnetic Fine Powder for Oil Suspending Magnetic Fluid (자성 유체용 미분 자성 분체의 제조)

  • 이경희;이병하;이재영
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.146-152
    • /
    • 1991
  • Ultra fine and homogeneous (Ni0.4Zn0.6)Fe2O4 ferrite powders were prepared by direct-wet, Hydrothermal and coprecipitation methods. In case that specific surface areas of Ni-Zn ferrite powders were over 220㎡/g, 100㎡/g, 30㎡/g individually direct-wet, hydrothermal and coprecipitation methods. The Ni-Zn ferrite magnetic fluids of which Solvents were benzene or kerosene was prepared by making cation surfactant adsorbed on the surface of the (Ni0.4Zn0.6)Fe2O4. The results that measured dispersion and viscosity by making cation surfactant adsorbed were as follows. 1. The adsorption amount of Oleric acid be proportioned the specific surface area of powders. 2. The maximum amount of Oleric acid was 36wt% of dried powders which has 220㎡/g of specific surface area. 3. The stability of fluid by direct-wet synthesis emthod in benzene or kerosene solvent excellent.

  • PDF

The Effect of Pretreatment for Cemented Carbide Substrate Using Wet Blasting

  • Hong, Sung-Pill;Kim, Soo-Hyun;Kang, Jae-Hoon;Yoon, Yeo-Kyun;Kim, Hak-Kyu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1102-1103
    • /
    • 2006
  • The pretreatment for substrate was carried out in change of gun pressure of $0.5\sim3.5$ bar using wet blasting. The size of $Al_2O_3$ powder was about $50{\sim}150{\mu}m$. As the results, the surface roughness of cemented carbide substrate was improved with increment of gun pressure of wet blasting. A new surface layer was formed and Co particles were uniformly distributed over the entire surface after pretreatment. The adhesion of the pretreated substrate in same PVD-TiAlN film was improved and in approximately $Ra=90\sim120\;nm$ shown the best adhesion value.

  • PDF

Comparative Analysis of Substrate Wet Surface Adhesion and Substrate Movement Response Performance Testing Methods for Injection Type Repair Materials Used in Leakage Cracks of Concrete Structure in Underground Environment (지하 습윤 환경에서 콘크리트 구조물 균열 누수에 사용되는 주입형 보수재료의 부착 성능과 거동 대응 성능 평가의 상관성 분석 연구)

  • Kim, Soo-Yeon;Oh, Kyu Hwan;Oh, Snag-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.19-26
    • /
    • 2018
  • The focus of this study was centered around 15 common injection type water leakage repair materials (3 different types for each; synthetic polymer, cementitious, acrylic, epoxy, urethane) used in concrete structures of Korea and analyzing their wet surface adhesion performance in accordance to the ISO TS 16774 Test Method for Repair Materials for Water-leakage Cracks in Underground Concrete Structures, Part 4: Test Method for Adhesion on Wet Concrete Surface, and the results of this study was taken to be place under a comparative analysis with the results of the preceeding study on response to substrate movement performance study. The results of this comparative study showed that other than 1 specimen of 1 type of the acrylic and 3 specimens of 1 type of the synthetic polymer type materials, all of the 93% of the specimens used in this study showed stable adhesion on wet substrate surface, and we were able to determine that materials that have proper response properties against substrate movement are highly flexible and have high adhesion properties, but their adhesion properties on wet substrate would change based on their viscosity.

Data Reduction on the Air-side Heat Transfer Coefficients of Heat Exchangers under Dehumidifying Conditions (제습이 수반된 공조용 증발기 습표면의 열전달계수 데이터 리덕션)

  • Kim, Nae-Hyun;Oh, Wang-Kyu;Cho, Jin-Pyo;Park, Hwan-Young;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.73-85
    • /
    • 2003
  • Four different methods of reducing the heat transfer coefficients from experimental data under dehumidifying conditions are compared. The four methods consist of two different heat and mass transfer models and two different fin efficiency models. Data are obtained from two heat exchanger samples having plain fins or wave fins. Comparison of the data with the reduction methods revealed that the single potential heat and mass transfer model yielded the humidity independent heat transfer coefficients. Two different fin efficiency models - enthalpy model and humidity model - yielded approximately the same fin efficiencies and accordingly approximately the same heat transfer coefficients. The heat transfer coefficients under wet conditions were approximately the same as those of the dry conditions for the plain fin configuration. For the wave fin configuration, however, wet surface heat transfer coefficients were approximately 12% higher. The pressure drops of the wet surface were 10% to 45% larger than those of the dry surface.

Surface Analysis and Conversion Efficiency of Multi-crystalline Silicon Solar Cell by Wet Chemical Etching (습식 화학 식각에 의한 다결정 실리콘 웨이퍼의 표면 분석 및 효율 변화)

  • Park, Seok-Gi;Do, Kyeom-Seon;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.111-115
    • /
    • 2011
  • Surface Texturing is an essential process for high efficiency in multi-crystalline silicon solar cell. In order to reduce the reflectivity, there are two major methods; proper surface texturing and anti-reflection coating. For texturization, wet chemical etching is a typical method for multi-crystalline silicon. The chemical solution for wet etching consists of HF, $NHO_3$, DI and $CH_3COOH$. We carried out texturization by the change of etching time like 15sec, 30sec, 45sec, 60sec and measured the reflectivity of textured wafers. As making the silicon solar cells, we obtained the conversion efficiency and relationship between texturing condition and solar cell characteristics. The reflectivity from 300nm to 1200nm was the lowest with 15 sec texturing time and 60 sec texturing time showed almost same reflectivity as bare one. The 45 sec texturing time showed the highest conversion efficiency.

  • PDF

Electrode Fabrication of MWCNT-PDMS Strain Sensors by Wet-etching (습식 식각을 이용한 MWCNT-PMDS 변형율 센서 전극 생성에 관한 연구)

  • Jung, La-Hee;Hwang, Hui-Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2021
  • This paper investigated the electrical properties of multiwall carbon nanotube reinforced polydimethylsiloxane (CNT-PDMS) strain sensors with copper electrodes on the wet-etched surface. MWCNT-PDMS strain sensors were fabricated according to the wt% of MWCNT. Surfaces on the electrode area were wet-etched with various etching duration and silver epoxy adhesives were spread on the wet-etched surface. Finally, we attached the copper electrodes to the MWCNT-PMDS strain sensors. We checked the electric conductivities by the two-probe method and sensing characteristics under the cyclic loading. We observed the electric conductivity of MWCNT-PDMS strain sensors increased sharply and the scattering of the measured data decreased when the surface of the electrode area was wet-etched. Initial resistances of MWCNT-PDMS strain sensors were inversely proportion to wt% of MWCNT and the etching duration. However, the resistance changing rates under 30% strain increased as wt% of MWCNT and the etching duration increased. Decreasing rate of the electric resistance change after 100 repetitions was smaller when wt% of MWCNT was larger and the etching duration was short. This was due to the low initial resistance of the MWCNT-PMDS strain sensors by the wet-etching.

The Effects of Organic Contamination and Surface Roughness on Cylindrical Capacitors of DRAM during Wet Cleaning Process

  • Ahn, Young-Ki;Ahn, Duk-Min;Yang, Ji-Chul;Kulkarni, Atul;Choi, Hoo-Mi;Kim, Tae-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.15-19
    • /
    • 2011
  • The performance of the DRAM is strongly dependent on the purity and surface roughness of the TIT (TiN/Insulator/ TiN) capacitor electrodes. Hence, in the present study, we evaluate the effects of organic contamination and change of surface roughness on the cylindrical TIT capacitor electrodes during the wet cleaning process by various analytical techniques such as TDMS, AFM, XRD and V-SEM. Once the sacrificial oxide and PR (Photo Resist) are removed by HF, the organic contamination and surface oxide films on the bottom Ti/TiN electrode become visible. With prolonged HF process, the surface roughness of the electrode is increased, whereas the amount of oxidized Ti/TiN is reduced due to the HF chemicals. In the 80nm DRAM device fabrication, the organic contamination of the cylindrical TIT capacitor may cause defects like SBD (Storage node Bridge Defect). The SBD fail bit portion is increased as the surface roughness is increased by HF chemicals reactions.

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.