• Title/Summary/Keyword: wet processing

Search Result 283, Processing Time 0.023 seconds

A Review of Withering in the Processing of Black Tea

  • Deb, Saptashish;Jolvis Pou, K.R.
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.365-372
    • /
    • 2016
  • Purpose: Tea is the most frequently consumed drink worldwide, next to water. About 75% of the total world tea production includes black tea, and withering is one of the major processing steps critical for the quality of black tea. There are two types of tea withering methods: physical and chemical withering. Withering can be achieved by using tat, tunnel, drum, and trough withering systems. Of these, the trough withering system is the most commonly used. This study focuses on the different types of withering, their effect on the various quality attributes of tea, and other aspects of withering methods that affect superior quality tea. Results: During physical withering, tea shoots loose moisture content that drops from approximately 70-80% to 60-70% (wet basis). This leads to increased sap concentration in tea leaf cells, and turgid leaves become flaccid. It also prevents tea shoots from damage during maceration or rolling. During chemical withering, complex chemical compounds break down into simpler ones volatile flavor compounds, amino acids, and simple sugars are formed. Withering increases enzymatic activities as well as the concentration of caffeine. Research indicates that about 15% of chlorophyll degradation occurs during withering. It is also reported that during withering lipids break down into simpler compounds and catechin levels decrease. Improper withering can cause adverse effects on subsequent manufacturing operations, such as maceration, rolling, fermentation, drying, and tea storage. Conclusion: Freshly harvested leaves are conditioned physically and chemically for subsequent processing. There is no specified withering duration, but 14-18 h is generally considered the optimum period. Proper and even withering of tea shoots greatly depends on the standards of plucking, handling, transportation, environmental conditions, time, and temperature. Thus, to ensure consumption of high quality tea, the withering step must be monitored carefully.

Comparison of the Hydration, Gelatinization and Saccharification Properties of Processing Type Rice for Beverage Development (음료 개발을 위한 가공용 쌀의 수화, 호화 및 당화특성 비교)

  • Shin, Dong-Sun;Choi, Ye-Ji;Sim, Eun-Yeong;Oh, Sea-Kwan;Kim, Si-Ju;Lee, Seuk Ki;Woo, Koan Sik;Kim, Hyun-Joo;Park, Hye-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.618-627
    • /
    • 2016
  • This study evaluated the hydration, gelatinization, and saccharification properties of rice processing for beverage development. The properties of rice were studied on 10 rice cultivars (Samkwang, Ilpum, Seolgaeng, Anda, Dasan-1, Goami-4, Danmi, American rice, Chinese rice, and Thai rice) and employing four kinds of pre-treatment methods (dry grain, wet grain, dry flour, and wet flour). The results showed that moisture content of rice was between 11.88~15.26%. Increase in soaking time along with highest water absorption was noted in American rice cultivar (46.81%). The water binding capacity of Thai rice was higher when compared to that of other rice flours. In addition, solubility and swelling power of rice were 4.52~26.65% and 0.19~2.05%, respectively. The amylose content of Goami-4 was higher in rice processing. Using a rapid visco analyzer (RVA), the initial pasting temperature of Danmi cultivar was found to be the highest; the peak viscosities of Anda cultivar and Dasan-1 cultivar, and Chinese rice were higher than of those of other rice flours. After saccharification, the pH, soluble solids content, and reducing sugar content of rice processed through different pre-treatment methods were in the range of 6.22~7.08, $4.67{\sim}16.07^{\circ}Brix$, and 0.35~11.67% (w/w), respectively. In terms of color values, the L-value of dry grain, a-value of wet (grain, flour), and b-value of dry sample (grain, flour) were found to be the highest. Assessment of various factors and cultivars characteristics of the raw grains are of importance in the development of rice beverage.

Study on the Manufacturing of Leather-like Material using Leather and Textile Scrap (피혁 및 섬유 제조공정 폐기물을 활용한 피혁 대체 소재의 제조에 관한 연구)

  • Kim, Won-Ju;Ko, Jae-Yong;Heo, Jong-Soom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.93-99
    • /
    • 2000
  • Treatment of shaving scrap, a chrome containing solid scrap generated by leather manufacturing process, has been so far depended on mainly incineration, soil landfill and ocean dumping, which give bad impact on environment and cause pollution. Shaving scrap generates from the mechanical work for controlling the final thickness of leather and its main components are collagen protein and pan of chromium compound. For the purpose of reusing this leather waste as resources, researches in connection with collagen fiber recovery, gelable protein recovery and liquid fertilizer is being speedily progressed. In the experiment, shaving scrap went through wet pulverizing treatment by physical and chemical methods. Then, making the leather sheet evenly, it is mixed with natural latex and every kind of binding materials in the container, and the mixtures were passed through experimental hydraulic press machine and applied to Fourdrinier machine respectively. Lastly, a test for fading out physical strength and properties of multiple-purpose of leather-like material was performed on a continuous leather sheet prepared by the experiment. In result, the physical strength and properties of leather-like material showed noticeable differences according to mixing ratio of binding materials, beating methods and the Ends of binding materials selected, and generally tear strength was the weakest property among others. Also, by the pilot scale experiment in sequence, it was possible to manufacture recycled goods made of soft and hard types of leather-like material with various performances.

  • PDF

Airborne Nicotine Concentrations in Harvesting and the Processing of Tobacco Leaves (담뱃잎 수확 및 가공 과정에서 공기 중 니코틴농도)

  • Park, Sung-Jun;Kim, Jong-Seuk;Kim, Jik-Su;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Green tobacco sickness (GTS) is known as an occupational disease among tobacco harvesters, and a form of acute nicotine intoxication by the absorption of nicotine through the skin from the wet green tobacco plant. On the assumption that GTS may occur by inhalation as well as absorption of nicotine, we measured the airborne nicotine concentration in tobacco field and the processing room of tobacco leaves. We measured the airborne nicotine concentrations in the tobacco field and processing room between 13 and 30 July 2008. All sampling and analyses of airborne nicotine were conducted according to the manual of analytic methods of NIOSH 2551, and we sampled 2 times at 11 points in the tobacco field by area sampling. The sampling in the processing room of tobacco leaves was conducted at 3 points, and earlymorning dew was collected from the tobacco by wringing the moisture into specimen bottles. The airborne nicotine concentration [geometric mean (geometric standard deviation)] in the tobacco field in the P.M. was higher [49.2 mg/$m^3$ (1.3)] than the A.M. concentration [43.4 mg/$m^3$ (1.4)]. Similarly, the nicotine concentration in the processing room of tobacco leaves was 224.4 mg/$m^3$ (1.2), and the concentration of nicotine in the dew was 64.7 mg/${\ell}$ (1.7). Based on our results, the airborne nicotine concentration in the tobacco field and the processing room of tobacco leaves were 100 and 400 times higher than the occupational recommended values (TLV-TWA of 0.5 mg/$m^3$), respectively. In the future, it is hoped that epidemiologic studies and environmental measurements will be conducted for GTS which occurs by inhalation of nicotine. If GTS is confirmed to occur by inhalation of nicotine, respiratory and dermal protective equipment must be distributed.

Fabrication of Calcined Clay Granule Comprising Zeolite (제올라이트를 함유하는 소성점토의 제조)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Jeong, Soo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.239-246
    • /
    • 2008
  • This research tried to find out the optimum fabrication method of calcined clay granules comprising zeolite. Kaolin clay and natural zeolite powder were used as raw materials of calcined clay, and silica stone powder was used for controlling the porosity of the granules. The granulation was performed with two kinds of granulators: a pan granulator and a high-shear mixer granulator. Various granules were fabricated by the mixing ratios and the rotation speeds of the granulators, and were heated from 400 to $700^{\circ}C$ at $100^{\circ}C$ interval. The crushing strength, pore size distribution, and CEC of the granules were measured. The evaluation method for the resistance of granules to human treading was created and the tests were conducted at dry and wet conditions. The resistance and crushing strength improved in proportion to the rotation speed of the granulator and the heating temperature, but the CEC decreased. The pellet made by the pan granulator did not have the strength against treading upon heating to below $700^{\circ}C$, but the pellet made by the high-shear mixer granulator endured the treading test upon heating to over $500^{\circ}C$

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

A Study on the Properties of Electric Arc-Furnace Steelmaking Dusts for Stabilization Processing (안정화 처리를 위한 전기로 제강분진의 물성)

  • 현종영;조동성
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.13-18
    • /
    • 1998
  • This study was carried out to understand the properties of the E.A.F. steel-making dusts for stabilization processing. The properties are related to mincral composition, shape, particle size, magnetism, density, porosity and leaching characteristic. the dust particles, the size of which ranges from sub-micron to tens-micron, were mainly spherical like balls that were agglomerated each other: the large particles were generally Fe-rich and the small particles were spherical like balls that were agglomerated each other: the large particles were franklinite (ZnFe$_{2}O_{4}$), magnetite (Fe$_{3}O_{4}$) and zincite (ZnO) by XRD analysis. When the dusts were sieved by a wet process, the particle fraction over 200 mesh had 1.5 wt.% with magnetite and quartz. The particles in the size range of 200-500 mesh consisted of magnetite, franklinite. The 82 wt.% of the steel-making dusts were occupied by the particles finer than 500 mesh and contained franklinite and zincite as main mineralogical compositions. When the dusts of around 78% porosity compressed under the load of approximately 1 KPa, the porosity decreased to 68% and to 535 under around 13 KPa. When the E.A.F. dusts were leached according to the Korea standard leaching procedure on the waster, the heavy metals exceeding the leaching criteria were cadmium, lead and mercury.

  • PDF

A Study on Recovery of Rare Earth and Acid Leaching for Wet Recycling of Waste NiMH Batteries (니켈수소 폐이차전지의 습식 재활용을 위한 산침출 및 희토류 회수에 대한 연구)

  • Ahn, Nak-Kyoon;Kim, Dae-Weon;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.22-30
    • /
    • 2018
  • In order to industrially recycle nickel, cobalt and rare earth elements included in waste NiMH batteries, electrode powder scraps were recovered by dismantle, crushing and classification from automobile waste battery module. As a result of leaching recovered electrode powder scrap with sulfuric acid solution, 99% of nickel, cobalt and rare earth elements were leached under reaction conditions of 1.0 M sulfuric acid solution, pulp density 25 g/L and reaction temperature $90^{\circ}C$ for 4 hours. In addition, the rare earth elements were able to separate from nickel / cobalt solution as cerium, lanthanum and neodymium precipitated under pH 2.0 using 10 M NaOH.

Development of Surface Myoelectric Sensor for Myoelectric Hand Prosthesis

  • Choi, Gi-Won;Moon, In-Hyuk;Sung, So-Young;Lee, Mynug-Joon;Chu, Jun-Uk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1268-1271
    • /
    • 2005
  • This paper proposes a compact-sized surface myoelectric sensor for myoelectric hand prosthesis. To fit the surface myoelectric sensor in the socket of the myoelectric hand prosthesis, the sensor should be a compact size. The surface myoelectric sensor is composed of a skin interface and a single processing circuit that are mounted on a single package. Since the skin interface has one reference and two input electrodes, and the reference electrode is located in middle of two input electrodes, we propose two types of sensors with the circle- and bar-shaped reference electrode, but all input electrodes are the bar-shaped. The metal material used for the electrodes is the stainless steel (SUS440) that endures sweat and wet conditions. Considering conduction velocity and median frequency of the myoelectric signal, we select the inter-electrode distance (IED) between two input electrodes as 18mm, 20mm, and 22 mm. The signal processing circuit consists of a differential amplifier with band pass filter, a band rejection filter for rejecting 60Hz power-line noise, amplifiers, and a mean absolute value circuit. We evaluate the proposed sensor from the output characteristics according to the IED and the shape of the reference electrode. From the experimental results we show the surface myoelectric sensor with the 18mm IED and the bar-shaped reference electrode is suitable for the myoelectric hand prosthesis.

  • PDF

Black Silicon of Pyramid Structure Formation According to the RIE Process Condition (RIE 공정 조건에 의한 피라미드 구조의 블랙 실리콘 형성)

  • Jo, Jun-Hwan;Kong, Dae-Young;Cho, Chan-Seob;Kim, Bong-Hwan;Bae, Young-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2011
  • In this study, pyramid structured black silicon process was developed in order to overcome disadvantages of using wet etching to texture the surface of single crystalline silicon and using grass/needle-like black silicon structure. In order to form the pyramidal black silicon structure on the silicon surface, the RIE system was modified to equip with metal-mesh on the top of head shower. The process conditions were : $SF_6/O_2$ gas flow 15/15 sccm, RF power of 200 W, pressure at 50 mTorr ~ 200 mTorr, and temperature at $5^{\circ}C$. The pressure did not affect the pyramid structure significantly. Increasing processing time increased the size of the pyramid, however, the size remained constant at 1 ${\mu}M$ ~ 2 ${\mu}M$ between 15 minutes ~ 20 minutes of processing. Pyramid structure of 1 ${\mu}M$ in size showed to have the lowest reflectivity of 7 % ~ 10 %. Also, the pyramid structure black silicon is more appropriate than the grass/needle-like black silicon when creating solar cells.