• Title/Summary/Keyword: wet impregnation

Search Result 63, Processing Time 0.027 seconds

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

K and Cs Doped Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx by Methane

  • Rao, Komateedi N.;Yu, Chang-Yong;Lack, Choi-Hee;Ha, Heon-Phil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.510-516
    • /
    • 2011
  • In the present study, potassium and caesium doped Ag/$Al_2O_3$ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/$Al_2O_3$ and Cs-Ag/$Al_2O_3$ catalysts exhibited a promotional effect on deNOx activity in the presence of $SO_2$ and $H_2O$. The long-term isothermal studies at $550^{\circ}C$ under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.

Immobilized Small Sized Manganese Dioxide Sand in the Remediation of Arsenic Contaminated Water

  • Tiwari, Diwakar;Laldawngliana, C.;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.107-113
    • /
    • 2014
  • Small sized manganese dioxide particles are immobilized onto the surface of sand by the wet impregnation process. The surface morphology of the solid, i.e., immobilized manganese dioxide natural sand (IMNS) is performed by taking scanning electron microscope images and characterized by the X-ray diffraction data. The specific surface area of the solid is obtained, which shows a significant increase in the specific surface area obtained by the immobilization of manganese dioxide. The $pH_{PZC}$ (point of zero charge) is found to be 6.28. Further, the IMNS is assessed in the removal of As(III) and As(V) pollutants from aqueous solutions under the batch and column operations. Batch reactor experiments are conducted for various physicochemical parametric studies, viz. the effect of sorptive pH (pH 2.0-10.0), concentration (1.0-25.0 mg/L), and background electrolyte concentrations (0.0001-0.1 mol/L $NaNO_3$). Further, column experiments are conducted to obtain the efficiency of IMNS under dynamic conditions. The breakthrough data obtained by the column experiments are employed in non-linear fitting to the Thomas equation, so as to estimate the loading capacity of the column for As(III) and As(V).

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.

A Study on the Optimum Design for LTCC Micro-Reformer: Design and performance evalution of monolith fuel reformer/PROX (LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구 ; 일체형 Reformer/PROX 반응기의 설계 및 성능평가)

  • Chung, C.H.;Oh, J.H.;Jang, J.H.;Jeong, M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.615-616
    • /
    • 2006
  • A micro-fuel processor system integrating steam reformer and partial oxidation reactor was manufactured using low temperature cofired ceramic (LTCC). A CuO/ZnO/$Al_2O_3$ catalyst and Pt-based catalyst prepared by wet impregnation were used for steam reforming and partial oxidation, respectively. The performance of the LTCC micro-fuel processor was measured at various operating conditions such as the effect of the feed flow rate, the ratio of $H_2O/CH_3OH$, and the operating temperature on the LTCC reformer and CO clean-up system. The catalyst layer was loaded with "Fill and Dry" coating for small volume. The product gas was composed of $70\sim75%$ hydrogen, $20\sim25%$ carbon dioxide, and $1\sim2%$ carbon monoxide at $250\sim300^{\circ}C$, respectively.

  • PDF

Synthesis of Pd-Ag on Charcoal Catalyst for Aerobic Benzyl Alcohol Oxidation Using [Hmim][PF6] ([Hmim][PF6]를 사용한 벤질 알코올의 호기성 산화반응용 팔라듐-은 차콜 촉매 제조)

  • Choo, Yunjun;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.425-429
    • /
    • 2014
  • Pd on charcoal particles were prepared by wet impregnation to develop commercial catalyst for aerobic benzyl alcohol oxidation. Especially, one of room temperature ionic liquids, [Hmim][$PF_6$], was used as an effective solvent in the synthesis to improve the metal dispersion of the catalysts. Among the Pd/Charcoal with various Pd concentrations, 7.5 wt% catalyst showed the higher catalytic activity and stability. Moreover, Ag was used as a promoter with various ratios in catalyst preparation. Under identical reaction conditions, the catalyst with 9 : 1 of Pd and Ag weight ratios was most active due to higher metal dispersion.

Preparation of Ag/TiO2 Particle for Aerobic Benzyl Alcohol Oxidation (Aerobic Benzyl Alcohol Oxidation 반응용 Ag/TiO2 제조)

  • Kim, Chang-Soo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.663-667
    • /
    • 2013
  • $Ag/TiO_2$ particle was prepared using various ionic liquids by wet impregnation. The properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to different abilities of an ionic liquid to coordinate with the silver particle, leading to various coagulation of silver particles. The catalytic activity of the prepared samples was examined for the aerobic benzyl alcohol oxidation. Among the particles, $Ag/TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate showed the best catalytic performance.

Effect of vanadium surface density and structure in VOx/TiO2 on selective catalytic reduction by NH3

  • Won, Jong Min;Kim, Min Su;Hong, Sung Chang
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2365-2378
    • /
    • 2018
  • We investigated the correlation between vanadium surface density and VOx structure species in the selective catalytic reduction of NOx by $NH_3$. The properties of the $VOx/TiO_2$ catalysts were investigated using physicochemical measurements, including BET, XRD, Raman spectroscopy, FE-TEM, UV-visible DRS, $NH_3-TPD$, $H_2-TPR$, $O_2-On/Off$. Catalysts were prepared using the wet impregnation method by supporting 1.0-3.0 wt% vanadium on $TiO_2$ thermally treated at various calcination temperatures. Through the above analysis, we found that VOx surface density was $3.4VOx/nm^2$, and the optimal V loading amounts were 2.0-2.5 wt% and the specific surface area was $65-80m^2/g$. In addition, it was confirmed that the optimal VOx surface density and formation of vanadium structure species correlated with the reaction activity depending on the V loading amounts and the specific surface area size.

Analysis of Mechanical and Thermal Properties of Epoxy Complex using Zirconia Supported Halloysite Nanotubes as Filler (지르코니아를 담지한 할로이사이트 나노튜브를 충진재로 이용한 에폭시 복합체의 기계적 열적 특성 분석)

  • Kim, Moon-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.461-466
    • /
    • 2022
  • Epoxy resins are widely used in various industrial fields. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with The zirconia impregnated HNTs (Zr/HNT) were investigated. Zr/HNT were characterized by Scanning electron microscope (SEM), transmittance electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and the mechanical strength of the epoxy composites (flexural strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy complex with Zr/HNT were improved compared to those of the epoxy complex with HNT, and also increased as the content of Zr/HNT increased.

Importance of Impregnation and Polishing for Backscattered Electron Image Analysis for Cementitious Self-Healing Specimen (시멘트계 자기치유 시편에 대한 반사전자현미경 이미지 분석을 위한 함침과 연마의 중요성)

  • Kim, Dong-Hyun;Kang, Kook-Hee;Bae, Seung-Muk;Lim, Young-Jin;Lee, Seung-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Studies on self-healing have currently been diversified and the methods to evaluate the studies have become more diversified as well. Among them, the back-scattered electron (BSE) image acquired through the scanning electron microscope (SEM) is attempted as the means to evaluate the self-healing effect on cracks. In order evaluate by the BSE image, sophisticated pre-processing of specimen is critical and this injected inside the particle, pore and artificial crack of the hardener to stabilize the structure of the newly generated self-healing product and it enables to endure the stress on polishing without deformation. The impregnated specimen smoothen the surface to obtain the BSE image of high resolution that polishing is made for diamond suspension for wet polishing after dry polishing. As a result of evaluating the self-healing product on the impregnated and polished self-healing specimen, the generated product is formed from the surface of the artificial crack and the self-healing substances are confirmed as $Ca(OH)_2$ and C-S-H.