Browse > Article
http://dx.doi.org/10.14478/ace.2013.1094

Preparation of Ag/TiO2 Particle for Aerobic Benzyl Alcohol Oxidation  

Kim, Chang-Soo (Clean Energy Research Center, KIST)
Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
Publication Information
Applied Chemistry for Engineering / v.24, no.6, 2013 , pp. 663-667 More about this Journal
Abstract
$Ag/TiO_2$ particle was prepared using various ionic liquids by wet impregnation. The properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to different abilities of an ionic liquid to coordinate with the silver particle, leading to various coagulation of silver particles. The catalytic activity of the prepared samples was examined for the aerobic benzyl alcohol oxidation. Among the particles, $Ag/TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate showed the best catalytic performance.
Keywords
$Ag/TiO_2$; aerobic benzyl alcohol oxidation; ionic liquids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. Sheldon, I. Arends, and A. Dijksman, New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 57, 157-166 (2000).   DOI   ScienceOn
2 R. A. Sheldon, I. W. C. E. Arends, G.-J. T. Brink, and A. Dijksman, Green, Catalytic Oxidations of Alcohols, Acc. Chem. Res., 35, 774-781 (2002).   DOI   ScienceOn
3 R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidation of Organic Compounds, Academic Press, New York (1981).
4 R. V. Stevens, K. T. Chapman, and H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones, J. Org. Chem., 45, 2030-2032 (1980).   DOI
5 J. R. Holum, Study of the chromium (VI) oxide-pyridine complex, J. Org. Chem., 26, 4814-4816 (1961).   DOI
6 D. G. Lee and U. A. Spitzer, Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 35, 3589-3590 (1970).   DOI
7 R. J. Highet and W. C. Wildman, Solid Manganese Dioxide as an Oxidizing Agent, J. Am. Chem. Soc., 77, 4399-4401 (1955).   DOI
8 F. M. Menger and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 22, 1655-1656 (1981).   DOI   ScienceOn
9 K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000).   DOI   ScienceOn
10 T. Nishimura, T. Onoue, K. Ohe, and S. Uemura, Palladium (II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, J. Org. Chem., 64, 6750-6755 (1999).   DOI   ScienceOn
11 M. Hasan, M. Musawir, P. N. Davey, and I. V. Kozhevnikov, Oxidation of primary alcohols to aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate, J. Mol. Catal. A Chem., 180, 77-84 (2002).   DOI   ScienceOn
12 K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters : a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004).   DOI   ScienceOn
13 A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005).   DOI   ScienceOn
14 W. Liu and M. Flytzani-Stephanopoulos, Cu-and Ag-modified cerium oxide catalysts for methane oxidation, J. Catal., 153, 304-316 (1995).   DOI   ScienceOn
15 A. Arcadi and S. D. Giuseppe, Recent applications of gold catalysis in organic synthesis, Curr. Org. Chem., 8, 795-812 (2004).   DOI   ScienceOn
16 Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B, 106, 9463-9483 (2002).
17 K. Mallick, M. J. Witcom, and M. S. Scurrell, Self-assembly of silver nanoparticles : formation of a thin silver film in a polymer matrix, Mater. Sci. Eng. C., 26, 87-91 (2006).   DOI   ScienceOn
18 P. Vonmatt and A. Pfaltz, Chiral Phosphinoaryldihydrooxazoles as Ligands in Asymmetric Catalysis : Pd‐Catalyzed Allylic Substitution, Angew. Chem. Int. Ed., 32, 566-568 (1993).   DOI   ScienceOn
19 D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 44, 7852-7872 (2005).   DOI   ScienceOn
20 M. Yoon, Y. Kim, V. Volkov, H. J. Song, Y. J. Park, and I. W. Park, Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film, Mater. Chem. Phys., 91, 104-107 (2005).   DOI   ScienceOn
21 S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang, and H. Gao, Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice, Langmuir, 17, 1571-1575 (2001).   DOI   ScienceOn
22 A. Manna, T. Imae, M. Iida, and N. Hisamatsu, Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex, Langmuir, 17, 6000-6004 (2001).   DOI   ScienceOn
23 Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298, 2176-2179 (2002).   DOI   ScienceOn
24 E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schats, Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc., 124, 15182-15183 (2002).   DOI   ScienceOn
25 K. S. Yoo, Synthesis of submicron silver particle using room temperature ionic liquids, Appl. Chem. Eng., 23, 14-17 (2012).
26 M. Maillard, S. Gieorgio, and M. P. Pileni, Tuning the size of silver nanodisks with similar aspect ratios : synthesis and optical properties, J. Phys. Chem., B, 107, 2466-2470 (2003).   DOI   ScienceOn
27 P. Wasserscheid and W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3773-3789 (2000).
28 T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2083 (1999).   DOI   ScienceOn