• Title/Summary/Keyword: welding distortion

Search Result 259, Processing Time 0.024 seconds

A Study on Welding Distortion of GTA Circular Type Lap Joint in STS304L Thin Plate (STS304L 박판 원형 겹치기 GTA 용접부의 용접 변형 예측에 관한 연구)

  • Kim, Il-Ho;Kim, Ha-Geun;Shin, Sang-Beom;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.57-63
    • /
    • 2012
  • The purpose of this study is to evaluate the welding distortion of the circular type lap joint in STS304L of 0.7mm thickness by using FEA. In order to do it, a heat input model for GTA welding process with non-consumable electrode was established through comparing the molten pool shapes and temperature distributions obtained by both FEA and experiment. With the heat input model, the welding distortion of the circular type lap joint was evaluated by 3-D FEA. From FEA results, it was found that 3-D FEA with proper heat input model can be used for the evaluation of the excessive distortion of the circular type lap joint of STS304L thin plate. In addition, the root cause of the excessive distortion in the weld was also identified as the excessive compressive residual stress in the tangential direction of the weld.

A Study on the Distortion of a Thin Plate Panel by Laser Welding (레이저용접에 의한 박판구조물의 용접변형 해석에 관한 연구)

  • Kim, Choong-Gi;Kim, Jae-Woong;Kim, Ki-Chul
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2007
  • Prediction and control of the thermal distortion is particularly important for the design and manufacture of welded thin plate panel. In this study, experiments and computations are performed to analyze effect of a hole configuration and a specimen size on distortion. In addition, this study aims to develop a thermal elasto-plastic simulation using finite element method to predict distortion, with particular emphasis on buckling deformation generated in plates welded around hole. From the experiments, the severe distortion appeared in the weldments by the laser welding process, in which the specimen size plays an important role on the distortion but the hole configuration showed little effect. And the results of numerical analysis were corresponded well with the experiment ones. Thus, a thermal elasto-plastic analysis model for predicting the weld distortion of thin plate panel was successfully developed through this study.

Development of an Efficient Method to Consider Weld Distortion in Tolerance Analysis (용접변형을 고려한 효율적 공차해석 기법 개발)

  • Yim Hyunjune;Lee Dongyul;Lee Jaeyeol;Kwon Ki Eak;Shin Jong-Gye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1377-1383
    • /
    • 2005
  • A general and efficient methodology has been developed to analyze dimensional variations of an assembly, taking into account of weld distortion. Weld distortion is generally probabilistic because of the random nature of welding parameters such as the welding speed, maximum welding temperature, ambient temperature, etc. The methodology is illustrated through a very simple example of two perpendicular plates fillet-welded to each other. Two steps comprise the methodology: establishment of a weld-distortion database, and tolerance analysis using the database. To establish the database, thermo-elasto-plastic finite element analyses are conducted to compute the weld distortion for all combinations of discrete values of major welding parameters. In the second step of tolerance analysis, the weld distortion retrieved from the database is used in addition to the dimensional tolerances of the parts. As a result of such an analysis, sensitivities of the assembly's dimensional variations to the part tolerances and weld distortion are obtained, which can be help improve the dimensional quality of the assembly.

Effects of Heating Conditions in the Straightening of Sheet Metal Distortion (박판재 변형의 가열교정에서 가열면적의 영향)

  • Park, Jun-Hyoung;Kim, Jae-Woong;Kim, Ki-Chul;Jun, Joong-Hwan
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.79-84
    • /
    • 2008
  • Use of sheet metal structure is increased in various fields such as automobile, aerospace and communication equipment industry. When this structure is welded, welding distortion is generated due to the non-uniformity of temperature distribution. Recently welding distortion becomes a matter of great importance in the structure manufacture industry because it deteriorates the product's quality by bringing about shape error. Accordingly many studies for solving the problems by controlling the welding distortion are being performed. However, it is difficult to remove all kinds of distortion by welding process, though various kinds of methods for reducing distortion are applied to production. Consequently, straightening process is operated if the high precision quality is requested after welding. The local heating method induces compression plastic deformation by thermal expansion in the heating stage and then leaves constriction of length direction in the cooling stage. Accordingly, in the case of sheet metal structure, straightening effect is expected by heating for the part of distortion. This study includes numerical analysis of straightening effect by the local heating method in distortion comes from production of welded sheet metal structure. Particularly straightening effect followed by dimensions of heating area is analyzed according to the numerical analysis. The numerical analysis is performed by constructing 3-dimensional finite element model for 0.4mm stainless steel-sheet metal. Results of this study confirm that straightening effect changes as heating area increases and the optimum value of heating area that proves the maximum straightening effect exists.

A Study on Welding Distortion and Residual Stress for Tubular Welded Joint (튜브 용접부의 용접변형 및 잔류응력에 관한 연구)

  • Jin, Hyung-Kook;Shin, Sang-Beom;Lee, Dong-Ju;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.51-56
    • /
    • 2012
  • The purpose of this study is to evaluate the distortion and the residual stress of GTA tubular welds between tube and head. In order to do it, the heat input model for GTA welding process was first developed by experiment and FE analyses. The welding distortion and the residual stress distribution of the tubular welds according to welding pass and various restraint degrees were evaluated by using FEA with the heat input model. From FEA results, it was found that the residual stress and the radial distortion at the weld toe of tube part decrease with a decrease in the number of welding pass. However, the maximum residual stresses in each direction of tubular welds are almost constant regardless of the external restraint degree. It was mainly due to the high internal restraint of the welds.

Experimental Study of the Redistribution of Welding Distortion According to the Partial Removal of Welded Structure (용접구조물의 부분 제거에 따른 용접변형의 재분포에 관한 실험적 연구)

  • Kim, Yong Rae;Wang, Chao;Kim, Jae Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.707-712
    • /
    • 2015
  • During the welding process, welding distortion is caused by the non-uniformity of the temperature distribution in the weldment. Welding distortion is redistributed because the residual stress and rigidity change according to the removal of the welded structure. In shipbuilding in particular, this phenomenon may be observed during the cutting process of lugs that are attached to blocks for transfer. The redistribution of welding distortion also causes problems, such as damage to the cutting tool. The aim of this study is to experimentally analyze the redistribution of welding distortion because of the partial removal of the welded structure. In the experiments conducted in this study, fillet welding and cutting were performed, and longitudinal bending and angular distortion in the welded structures were then investigated and analyzed.

The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model (Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구)

  • Jang Kyoung-Bok;Cho Si-Hoon;Jang Tae-Won
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

A Study on the Prediction of the Welding Distortion for GMA and SA weldment of 9% Ni Steel (9% Ni강의 GMA 및 SA 용접부 변형 예측)

  • Lee, Hui-Tae;Kim, Ha-Geun;Kim, Gyeong-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.26-28
    • /
    • 2005
  • The purpose of this study is to evaluate the behavior of the welding distortion of the 9% Ni steel weldment involving the martensitic phase transformation. In order to do it, an uncoupled thermal-mechanical finite element (FE) model was developed to evaluate the effect of the phase transformation on the distortion for the weldment. High speed quenching dilatometer tests were employed to define the variations of the coefficient of thermal expansion (CTE) with the fraction of the martensitic phase transformation, which strongly depends on the cooling speed after welding. Comprehensive experiments for the welding distortion of the weldment with reference to welding heat input were employed to verify the FE model.

  • PDF