• Title/Summary/Keyword: welded structures

Search Result 549, Processing Time 0.026 seconds

A Comparative Study for the Fatigue Assessment of Side Shell Longitudinals on 8,100 TEU Container Carrier using Hot Spot Stress and Structural Stress Approaches (구조응력 및 핫스팟 응력을 이용한 8,100 TEU 컨테이너선 선측 종늑골구조의 피로 강도 평가에 대한 비교 연구)

  • Kim, Seong-Min;Kim, Myung-Hyun;Kang, Sung-Won;Pyun, Jang-Hoon;Kim, Young-Nam;Kim, Sung-Geun;Lee, Kyong-Eon;Kim, Gyeng-Rae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.296-302
    • /
    • 2008
  • Recently, a mesh-size insensitive structural stress definition (structural stress method) is proposed that gives a stress state at weld toe with a relatively large mesh size. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of weld toe. In this study, a fatigue strength assessment for a side shell connection of a container vessel using both the hot spot stress and the Battelle structural stress method was carried out. A consistent approach to compute the extrapolated hot spot stress for design purpose is described and current fatigue guidance is evaluated. Fatigue strength predicted by the two methodologies, e.g. hot spot stress and structural stress approaches, at hot spot locations of a typical ship structure are compared and discussed.

Collapse Behavior of an 18-Story Steel Moment Frame during a Shaking Table Test

  • Suita, Keiichiro;Suzuki, Yoshitaka;Takahashi, Motomi
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • A shaking table test was conducted at the E-Defense shaking table facility to investigate the damage and collapse behavior of a steel high-rise building under exceedingly large ground motions. The specimen is a one-third scale 18-story steel moment frame designed and constructed according to design specifications and practices used in the 1980s and 1990s. The shaking table tests used a long-duration, long-period ground motion simulated for a sequential Tokai, Nankai, and Nankai earthquake scenario. The building specimen was subjected to a series of progressively increasing scaled motions until it completely collapsed. The damage to the steel frame began through the yielding of beams along lower stories and column bases of the first story. After several excitations by increasing scaled motions, cracks initiated at the welded moment connections and fractures in the beam flanges spread to the lower stories. As the shear strength of each story decreased, the drifts of lower stories increased and the frame finally collapsed and settled on the supporting frame. From the test, a typical progression of collapse for a tall steel moment frame was obtained, and the hysteretic behavior of steel structural members including deterioration due to local buckling and fracture were observed. The results provide important information for further understanding and an accurate numerical simulation of collapse behavior.

A Study on Characteristics of Fatigue Life in LOP Cruciform Fillet Welding Zone (미 용입 십자형 필릿 용접부에서의 피로 수명 특성에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.29-34
    • /
    • 2012
  • Investigating safer ways to design and use to prevent a loss of life and property by failure of the structures are necessary and assessing total fatigue life with initiation and propagation of fatigue crack accurately through fatigue analysis is very important. The object of this study is to examine the initial life and propagation life when the fatigue crack is introduced from the root which is likely to appear in LOP(Lack of Penetration) cruciform fillet welded structure including bridges, ships and gas storage facilities which are impossible to be fully penetrated and to measure the rate of fatigue life until the final cleavage failure. As the result, each rate of fatigue life for fatigue failure is somewhat different in the range of 5% according to the thickness of material, however, the overall rate of initial life is in the range of 34~39% and propagation life showed the range of 61~66%.

A Study on the Mitigation of Welding Distortion of a Precision Component for Automobile Transmission (자동차 변속기용 정밀 부품의 용접변형 감소화에 관한 연구)

  • Chung, Hoi-Yoon;Kim, Jae-Woong;Yun, Seok-Chul
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.31-37
    • /
    • 2012
  • In recent years, a demand for precision-welding is increasing in wide industrial fields for getting a high quality welded structures. Although laser welding is commonly used for precision-welding, gas tungsten arc (GTA) welding is also attempted as a precision-welding due to the cost benefit. However, welding heat causes an uneven temperature distribution leading to welding deformation. Since it causes geometric errors and degrades product quality, welding distortion recently rises as an important issue in the field of automobile parts. To control welding deformation, it is needed to design in shapes that can maximize stiffness against deformation during welding; control the welding sequence; minimize heat input; and weld allowing reverse deformation; etc. Thus it is necessary to find the one, among such approaches, that can minimize the deformation range by mathematical analysis and understand how effective it would be when it is actually used in industrial fields. This study performs analyses by numerical calculations and experiments for the De-Tent Lever, one of transmission part that requires precision the most among automobile parts, as the subject of experiment. Decrease in welding deformation is required for this part, since there is currently a trouble in guaranteeing precision due to angular deformation by welding between boss and plate. Finally the ways to minimize welding deformation has been suggested in this study through analyses on it.

Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge (강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안)

  • Lee, Kyoung-Chan;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.15-21
    • /
    • 2009
  • The design of the stud shear connector of a bridge structure is mostly controlled by the fatigue resistance not by the strength, if it is followed by AASHTO LRFD Bridge Design Specification. This fatigue design code in AASHTO LRFD is based on the research work done by Slutter and Fisher in 1966. These tests seemingly underestimated the fatigue resistance of connectors because of the inherent eccentricity of the one-face test setup which results additional tension forces to the stud. In addition, the stress ranges were not plotted in the log scale, because it was not known at that time that the fatigue resistance of the welded steel structures has a linear relationship of log scales of stress range and number of loading cycles. This study evaluates the test data produced by the Slutter and Fischer, and plot the data on the proper manner. The fatigue push-out test data produced recently by many other researches all around the world are gathered and analyzed, furthermore a design curve is recommended.

Comparison Research of SNR and SRb with Bright Calibration and Multi Frame Images in Digital Radiography of Welded Test Components (용접 시험편의 디지털 방사선 검사에서 밝기 교정과 중첩 영상에 따른 SNR 및 SRb 비교 연구)

  • Nam, Mun-Ho;Yang, Jin-Wook;Cho, Kap-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.731-739
    • /
    • 2021
  • This work compared the bright calibration of digital radiation with signal-to-noise ratio and basic spatial resolution according to multi frame to enable effective inspection of welding parts of structures at industrial sites. A total of 130 images were obtained by using a 75Se radiation source for flat weld test pieces and segmenting bright calibration and multi frame prior to shooting. The study confirms that the signal-to-noise ratio improves as the number of bright calibrations and the number of multi frame increases. The basic spatial resolution satisfied the baseline for both radiographic images. It was confirmed that the number of signal-to-noise ratio was similar by comparing images taken after installing lead shielding for scattering radiation. Although signal-to-noise ratio increases as multi frame increases, it is believed that good quality digital radiographs can be obtained if appropriate radiographic techniques are devised because exposure time of radiation affects workers' exposure and work efficiency.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

Study of using the loss rate of bolt pretension as a damage predictor for steel connections

  • Chui-Hsin Chen;Chi-Ming Lai;Ker-Chun Lin;Sheng-Jhih Jhuang;Heui-Yung Chang
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.81-90
    • /
    • 2023
  • The maximum drifts are important to the seismic evaluation of steel buildings and connections, but the information can hardly be obtained from the post-earthquake field investigation. This research studies the feasibility of using the loss rate of bolt pretension as an earthquake damage predictor. Full-scale tests were made on four steel connections using bolted-web-welded-flange details. One connection was unreinforced (UN), another was reinforced with double shear plates (DS), and the other two used reduced beam sections (RBS). The preinstalled strain gauges were used to control the pretensions and monitor the losses of the high-strength bolts. The results showed that the loss rate of bolt pretension was highly related to the damage of the connections. The pretensions lost up to 10% in all the connections at the yield drifts of 0.5% to 1%. After yielding of the connections, the pretensions lost significantly until fracture occurred. The UN and DS connections failed with a maximum drift of 4 %, and the two RBS connections showed better ductility and failed with a maximum drift of 6%. Under the far-field-type loading protocol, the loss rate grew to 60%. On the contrary, the rate for the specimen under near-fault-type loading protocol was about 40%. The loss rate of bolt pretension is therefore recommended to use as an earthquake damage predictor. Additionally, the 10% and 40% loss rates are recommended to predict the limit states of connection yielding and maximum strength, respectively, and to define the performance levels of serviceability and life-safety for the buildings.