• 제목/요약/키워드: weld line

검색결과 379건 처리시간 0.027초

고무사출성형의 적정설계 (Optimum Design of Rubber Injection Molding Process)

  • 이은주;임광희;부타이지양
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.47-55
    • /
    • 2011
  • K사의 고무 사출성형에 있어서 애로사항인 등속조인트 부트(boots)의 크 (crack) 발생 등의 문제점을 해결하기 위하여, 상용 CAE 프로그램인 MOLDFLOW(Ver. 5.2)를 이용한 전산모사를 수행하여 적정금형설계를 도출하고 적정작업조건을 구축하였다. 그 결과 크 의 발생 원인은 크 이 발생하는 위치에 형성되는 weld 및 meld line의 형성 때문이고, 또한 크 이 발생하는 위치에서의 가류(curing)가 불완전한 것이 확인되었다. 이와 같은 weld 및 meld line의 형성을 방지하기 위해서 게이트(gate)의 위치를 변경하고 최적위치에 설계함으로써, 유동선단(melt front)의 충돌 또는 수지흐름의 만남을 최소화하는 충전패턴(fill pattern)을 형성하고 부트 안쪽 하단의 크 발생을 방지하였다. Weld 및 meld line과 에어트랩(air trap) 불량이 가장 큰 게이트 위치는 각각 최적 게이트위치를 기준으로 서로 정반대 방향임이 관찰 되었다. 한편 몰드(mold)의 온도를 $170^{\circ}C$로 유지하게 함으로써 크 이 발생했던 위치에 가류조건을 만족시켰다.

로보트 아크용접에서 시각인식장치를 이용한 용접선의 추적

  • 손영탁;김재선;조형석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.550-555
    • /
    • 1993
  • The aim of this paper is to present the development of visual seam tracking system equipped with visual range finder. The visual range finder, which consists of a CCD camera and a diode laser system with line generating optics, developed to recognize the types of weld joints and detect the location of weld joints. In practical applications, however, images of the weld joints are often degraded due to spatters, are flares, surface specularity, and welding smoke. To overcome the problem, this paper proposes a syntactic approach which is a class of artificial intelligence techniques. In the approach, the type of weld joint is inferred based upon the production rules which are linguiques grammars consisting of a set of line and junction primitives of laser strip image projected on weld joint. The production rules eliminate several noisy primitives to create new primitives through the merging process of primitives. After the recognition of weld joint, arc welding is started and the location of weld joints is repeatedly detected using a spring model-based template matching in which the template model is a by-product of the recognition process of weld joint. To show the effectiveness of the proposed approach a series of experiments-identification and robotic tracking-are conducted for four different types of weld joints.

  • PDF

레이저 용접 테일러드 블랭크의 기본 성형특성 I : 인장변형 특성 (Forming Characteristics of Laser Welded Tailored Blanks I : Tensile Deformation Characteristics.)

  • 박기철;한수식;김광선;권오준
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.23-35
    • /
    • 1998
  • In order to analyze the tensile deformation characteristics of laser welded tailored blanks. laser welded blanks of different thikness and strength combinations were prepared and tensile tests were done. The tensile elongation along the direction perpendicular to weld line of laser welded blanks was reduced as increasing the deformation restraining force (strength X thicknes) ratio between two welded sheets and fracture occurred at weaker side of base sheets if void ration of welded sheets and fracture occurred at weaker side of base sheets if void ratio of weld section was less than 45% The tensile elongation along weld line reached above 90% of the elongation of base material if welding was done perfectly. Total elongation along the direction perpendicular to weld line was able to be predicted by force equilibrium and power law behavior of base sheets and it was related with the deformation of stronger sheet and formability of weaker side.

  • PDF

Effect of a Single Applied Overload on Fatigue Crack Growth Behavior in Laser-welded Sheet Metal

  • Kwak Dai-Soon;Kim Seog-Hwan;Oh Taek-Yul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.30-34
    • /
    • 2006
  • We investigated fatigue crack growth behavior in laser-welded sheet metal caused by a single applied overload The fatigue specimens were made using butt jointed cold rolled sheet metal that was welded with a $CO_2$ laser, The effects of the specimen thickness and overload ratio were determined from fatigue crack propagation tests, These tests were performed in such a way that the fatigue loading was aligned parallel to the weld line while the crack propagated perpendicular to the weld line, Overload ratios of 1.0, 1.5, and 2. 0 were applied near the tip of the fatigue crack at points located 6, 4, and 2 mm from the weld line. The specimens were either 0.9 or 2.0 mm thick. The size of the plastic zone at the crack tip due to the single applied overload was also determined using finite element analysis.

용접부의 천공 측정법에 의한 잔류 응력에 관한 연구 (A Study on the Residual Stresses by the Hole Drilling Measuring in the WeldZone)

  • 남궁재관
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.115-121
    • /
    • 2008
  • A knowloedge of the residual stress distribution at circumferential welds can increase the prediction accuracy of a fracture assessment in pipe lines. In this study, in order to predict the residual stress distribution in the circumferential butt-welded pipes were measured, using the hole-drilling strain gauge method. Their practical applications were performed in to two kinds of pipes. As the results, the following characteristics were found. On the inner surface of pipes, the circumferential and axial residual stresses were both tensile near the center line of welding and both of them changed from tensile to compressive as the distance from the center line increased. On the outer surface, however, the circumferential residual stress was shown to be tensile wile the axial residual stress was compressive near the center line of welding, and later they were revered at the region far away from the centerline.

초대형 구조모델을 활용한 쉘구조물의 용접변형 해석 (A weld-distortion analysis method of the shell structures using ultra structural FE model)

  • 하윤석;이명수
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

레이저 테일러드 블랭크 용접 품질 모니터링 시스템 개발 (Development of laser tailored blank weld quality monitoring system)

  • 박현성;이세헌
    • 한국레이저가공학회지
    • /
    • 제3권2호
    • /
    • pp.53-61
    • /
    • 2000
  • On the laser weld production line, a slight alteration of the welding condition produces many defects. The defects are monitored in real time, in order to prevent continuous occurrence of defects, reduce the loss of material, and guarantee good quality. The measurement system is produced by using three photo-diodes for detection of the plasma and spatter signal in CO$_2$ laser welding. For high speed CO$_2$ laser welding, laser tailored welded blanks for example, on-line weld quality monitoring system was developed by using fuzzy multi-feature pattern recognition. Weld qualities were classified optimal heat input, a little low heat input, low heat input, and focus misalignment, and final weld quality were classified good and bad.

  • PDF

신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어 (Control of Weld Pool Size in GMA Welding Process Using Neural Networks)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • 제12권1호
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

GMAW에서 아크 빛을 이용한 실시간 용접품질 모니터링에 관한 연구 (A Study on On-Line Quality Monitoring Using Arc Light in Gas Metal Arc Welding)

  • 조택동;양상민
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.82-86
    • /
    • 2000
  • Gas metal arc welding(GMAW) is regarded as one of the best candidate for welding automation in industrial joining application. It is important to monitor the weld quality for the high performance weld automation. In GMAW, weld quality is closely related to arc stability especially. In this paper, arc light signal is measured and spectrum analyzed to the detect the variation of the weld quality. The FFT of the signal showed that the amplitude variance of FFT power spectrum was very large in poor weld process such as the decrease of weld bead width and height. The results show that it is possible to detect the weld defect position in weld process.

  • PDF

박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향 (Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • 제6권3호
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF