• Title/Summary/Keyword: weighted network

Search Result 517, Processing Time 0.02 seconds

A Comparison Study on the Weighted Network Centrality Measures of tnet and WNET (tnet과 WNET의 가중 네트워크 중심성 지수 비교 연구)

  • Lee, Jae Yun
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.4
    • /
    • pp.241-264
    • /
    • 2013
  • This study compared and analyzed weighted network centrality measures supported by Opsahl's tnet and Lee's WNET, which are free softwares for weighted network analysis. Three node centrality measures including weighted degree, weighted closeness, and weighted betweenness are supported by tnet, and four node centrality measures including nearest neighbor centrality, mean association, mean profile association, triangle betweenness centrality are supported by WNET. An experimental analysis carried out on artificial network data showed tnet's high sensitiveness on linear transformations of link weights, however, WNET's centrality measures were insensitive to linear transformations. Seven centrality measures from both tools, tnet and WNET, were calculated on six real network datasets. The results showed the characteristics of weighted network centrality measures of tnet and WNET, and the relationships between them were also discussed.

Privacy Protection Method for Sensitive Weighted Edges in Social Networks

  • Gong, Weihua;Jin, Rong;Li, Yanjun;Yang, Lianghuai;Mei, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.540-557
    • /
    • 2021
  • Privacy vulnerability of social networks is one of the major concerns for social science research and business analysis. Most existing studies which mainly focus on un-weighted network graph, have designed various privacy models similar to k-anonymity to prevent data disclosure of vertex attributes or relationships, but they may be suffered from serious problems of huge information loss and significant modification of key properties of the network structure. Furthermore, there still lacks further considerations of privacy protection for important sensitive edges in weighted social networks. To address this problem, this paper proposes a privacy preserving method to protect sensitive weighted edges. Firstly, the sensitive edges are differentiated from weighted edges according to the edge betweenness centrality, which evaluates the importance of entities in social network. Then, the perturbation operations are used to preserve the privacy of weighted social network by adding some pseudo-edges or modifying specific edge weights, so that the bottleneck problem of information flow can be well resolved in key area of the social network. Experimental results show that the proposed method can not only effectively preserve the sensitive edges with lower computation cost, but also maintain the stability of the network structures. Further, the capability of defending against malicious attacks to important sensitive edges has been greatly improved.

Weighted Local Naive Bayes Link Prediction

  • Wu, JieHua;Zhang, GuoJi;Ren, YaZhou;Zhang, XiaYan;Yang, Qiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.914-927
    • /
    • 2017
  • Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

Determining the Most Vital Arcs in the Weighted Network of GIS (GIS의 가중네트워크에서 MVA를 결정하는 방법)

  • 정호연
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.181-191
    • /
    • 1998
  • The purpose of this paper is to develop an efficient algorithm for determining the most vital arcs in a weighted network and implement its algorithm on GIS. The most vital arcs in a weighted network of GIS is that arc whose removal from the network results in the greatest increase in shortest distance between two specified nodes. These studies are well applied to a situation where a logistics or communications network is broken by unexpected accidents. Because a user of the system wants to know which arcs are most vital to him so that he can reinforce them against unexpected accidents. We first present an algorithm to find the most vital arcs in a weighted network, then show that how its algorithm can be applied to a geo-spatial network.

  • PDF

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

Extracting Wisconsin Breast Cancer Prediction Fuzzy Rules Using Neural Network with Weighted Fuzzy Membership Functions (가중 퍼지 소속함수 기반 신경망을 이용한 Wisconsin Breast Cancer 예측 퍼지규칙의 추출)

  • Lim Joon Shik
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.717-722
    • /
    • 2004
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer using neural network with weighted fuzzy membership functions (NNWFM). NNWFM is capable of self-adapting weighted membership functions to enhance accuracy in prediction from the given clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from the enhanced bounded sums of n set of weighted fuzzy membership functions. Two number of prediction rules extracted from NNWFM outperforms to the current published results in number of rules and accuracy with 99.41%.

An Efficient Distributed Algoritm for the Weighted Shortest-path Updating Problem (최단 경로 갱신문제를 해결하는 분산알고리듬)

  • Park, Jeong-Ho;Lee, Gyeong-O;Gang, Gyu-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1778-1784
    • /
    • 2000
  • We consider the weighted shortest path updating problem, that is, the problem to reconstruct the weighted shortest paths in response to topology change of the network. This appear proposes a distributed algorithms that reconstructs the weighted shortest paths after several processors and links are added and deleted. its message complexity and ideal-time complexity are O(p$^2$+q+n') and O(p$^2$+q+n') respectively, where n' is the number of processors in the network after the topology change, q is the number of added links, and p is the total number of processors in he biconnected components (of the network before the topology change) including the deleted links or added links.

  • PDF