• Title/Summary/Keyword: weighted network

Search Result 517, Processing Time 0.028 seconds

tnet과 WNET의 가중 네트워크 중심성 지수 비교 연구 (A Comparison Study on the Weighted Network Centrality Measures of tnet and WNET)

  • 이재윤
    • 정보관리학회지
    • /
    • 제30권4호
    • /
    • pp.241-264
    • /
    • 2013
  • 이 연구에서는 공개된 가중 네트워크 분석용 소프트웨어인 Opsahl의 tnet과 이재윤의 WNET에서 지원하는 가중 네트워크 중심성 지수를 비교 분석해보았다. tnet은 가중 연결정도중심성, 가중 근접중심성, 가중 매개중심성을 지원하고, WNET은 최근접이웃중심성, 평균연관성, 평균프로파일연관성, 삼각매개중심성을 지원한다. 가상 데이터를 대상으로 한 분석에서 tnet의 중심성 지수는 링크 가중치의 선형변화에 민감한 반면 WNET의 중심성 지수는 선형 변화에 영향을 받지 않았다. 실제 네트워크 6종을 대상으로 가중 네트워크 중심성을 측정하고 결과를 비교하여 두 소프트웨어의 가중 네트워크 중심성지수들의 특징을 파악하고 중심성 지수 간 관계를 살펴보았다.

Privacy Protection Method for Sensitive Weighted Edges in Social Networks

  • Gong, Weihua;Jin, Rong;Li, Yanjun;Yang, Lianghuai;Mei, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.540-557
    • /
    • 2021
  • Privacy vulnerability of social networks is one of the major concerns for social science research and business analysis. Most existing studies which mainly focus on un-weighted network graph, have designed various privacy models similar to k-anonymity to prevent data disclosure of vertex attributes or relationships, but they may be suffered from serious problems of huge information loss and significant modification of key properties of the network structure. Furthermore, there still lacks further considerations of privacy protection for important sensitive edges in weighted social networks. To address this problem, this paper proposes a privacy preserving method to protect sensitive weighted edges. Firstly, the sensitive edges are differentiated from weighted edges according to the edge betweenness centrality, which evaluates the importance of entities in social network. Then, the perturbation operations are used to preserve the privacy of weighted social network by adding some pseudo-edges or modifying specific edge weights, so that the bottleneck problem of information flow can be well resolved in key area of the social network. Experimental results show that the proposed method can not only effectively preserve the sensitive edges with lower computation cost, but also maintain the stability of the network structures. Further, the capability of defending against malicious attacks to important sensitive edges has been greatly improved.

Weighted Local Naive Bayes Link Prediction

  • Wu, JieHua;Zhang, GuoJi;Ren, YaZhou;Zhang, XiaYan;Yang, Qiao
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.914-927
    • /
    • 2017
  • Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

GIS의 가중네트워크에서 MVA를 결정하는 방법 (Determining the Most Vital Arcs in the Weighted Network of GIS)

  • 정호연
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.181-191
    • /
    • 1998
  • The purpose of this paper is to develop an efficient algorithm for determining the most vital arcs in a weighted network and implement its algorithm on GIS. The most vital arcs in a weighted network of GIS is that arc whose removal from the network results in the greatest increase in shortest distance between two specified nodes. These studies are well applied to a situation where a logistics or communications network is broken by unexpected accidents. Because a user of the system wants to know which arcs are most vital to him so that he can reinforce them against unexpected accidents. We first present an algorithm to find the most vital arcs in a weighted network, then show that how its algorithm can be applied to a geo-spatial network.

  • PDF

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

가중 퍼지 소속함수 기반 신경망을 이용한 Wisconsin Breast Cancer 예측 퍼지규칙의 추출 (Extracting Wisconsin Breast Cancer Prediction Fuzzy Rules Using Neural Network with Weighted Fuzzy Membership Functions)

  • 임준식
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.717-722
    • /
    • 2004
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NNWFM)을 이용하여 Wisconsin breast cancer의 예측을 수행하는 퍼지규칙을 추출하고 있다. NNWFM는 자기적응적(self adaptive)가중 퍼지소속함수를 가지고 주어진 입력 데이터로부터 학습하여 퍼지규칙을 생성하고 이론 기반으로 예측을 수행한다. 신경망 구조의 중간 부분인 하이퍼박스(hyperbox)들은 n개의 대, 중, 소의 가중 퍼지소속함수 집합으로 구성되며, 학습 후 각 집합은 퍼지집합의 bounded sum을 사용하여 다시 하나의 가중 퍼지소속함수로 합성된다. n개의 특징입력(feature input)은 학습된 모든 하이퍼박스에 연결되어 예측 작업을 수행한다. NNWFM으로 추출된 2개의 퍼지규칙은 99.41%의 예측 인식율을 가지며 이는 퍼지규칙의 수와 인식율에 있어 현재 발표된 논문의 결과보다 우수함을 보여준다.

최단 경로 갱신문제를 해결하는 분산알고리듬 (An Efficient Distributed Algoritm for the Weighted Shortest-path Updating Problem)

  • 박정호;이경오;강규철
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1778-1784
    • /
    • 2000
  • We consider the weighted shortest path updating problem, that is, the problem to reconstruct the weighted shortest paths in response to topology change of the network. This appear proposes a distributed algorithms that reconstructs the weighted shortest paths after several processors and links are added and deleted. its message complexity and ideal-time complexity are O(p$^2$+q+n') and O(p$^2$+q+n') respectively, where n' is the number of processors in the network after the topology change, q is the number of added links, and p is the total number of processors in he biconnected components (of the network before the topology change) including the deleted links or added links.

  • PDF