• Title/Summary/Keyword: weighted least squares

Search Result 142, Processing Time 0.024 seconds

Estimating the Term Structure of Interest Rates Using Mixture of Weighted Least Squares Support Vector Machines (가중 최소제곱 서포트벡터기계의 혼합모형을 이용한 수익률 기간구조 추정)

  • Nau, Sung-Kyun;Shim, Joo-Yong;Hwang, Chang-Ha
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • Since the term structure of interest rates (TSIR) has longitudinal data, we should consider as input variables both time left to maturity and time simultaneously to get a more useful and more efficient function estimation. However, since the resulting data set becomes very large, we need to develop a fast and reliable estimation method for large data set. Furthermore, it tends to overestimate TSIR because data are correlated. To solve these problems we propose a mixture of weighted least squares support vector machines. We recognize that the estimate is well smoothed and well explains effects of the third stock market crash in USA through applying the proposed method to the US Treasury bonds data.

Weighted Least-Squares Design and Parallel Implementation of Variable FIR Filters

  • Deng, Tian-Bo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.686-689
    • /
    • 2002
  • This paper proposes a weighted least-squares(WLS) method for designing variable one-dimensional (1-D) FIR digital filters with simultaneously variable magnitude and variable non-integer phase-delay responses. First, the coefficients of a variable FIR filter are represented as the two-dimensional (2-D) polynomials of a pair of spectral parameters: one is for tuning the magnitude response, and the other is for varying its non-integer phase-delay response. Then the optimal coefficients of the 2-D polynomials are found by minimizing the total weighted squared error of the variable frequency response. Finally, we show that the resulting variable FIR filter can be implemented in a parallel form, which is suitable for high-speed signal processing.

  • PDF

Estimation of Regionai Skew Coefficient with Weighted Least Squares Regression (가중회귀분석에 의한 지역화왜곡계수의 추정)

  • 조국광;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.103-109
    • /
    • 1990
  • The application of the Log-Pearson Type m distribution recommended by Water Resources Council, U. S. A. for flood frequency analysis requires the estimation of the regionalized skew coefficient. In this study, regionalized skew coefficients are estimated using a weighted regression model which relates at-site skews based on logarithms of observed annual flood peak series to both basin characteristics and precipitation data in the Han river and the Nakdong river basin. The model is developed with weighted least squares method in which the weights are determined by separating residual variance into that due to model error and due to sampling error. As the result of analysis, regionalized skews are estimated as - 0.732 and - 0.575 in the Han river and the Nakdong river basin, respectively.

  • PDF

Mixed-effects model by projections (사영에 의한 혼합효과모형)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1155-1163
    • /
    • 2016
  • This paper deals with an estimation procedure of variance components in a mixed effects model by projections. Projections are used to obtain sums of squares instead of using reductions in sums of squares due to fitting both the assumed model and sub-models in the fitting constants method. A projection matrix can be obtained for the residual model at each step by a stepwise procedure to test the hypotheses. A weighted least squares method is used for the estimation of fixed effects. Satterthwaite's approximation is done for the confidence intervals for variance components.

A General Semiparametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.421-429
    • /
    • 2008
  • We consider a general semiparametric additive risk model that consists of three components. They are parametric, purely and smoothly nonparametric components. In parametric component, time dependent term is known up to proportional constant. In purely nonparametric component, time dependent term is an unknown function, and time dependent term in smoothly nonparametric component is an unknown but smoothly function. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

Terrain Slope Estimation Methods Using the Least Squares Approach for Terrain Referenced Navigation

  • Mok, Sung-Hoon;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents a study on terrain referenced navigation (TRN). The extended Kalman filter (EKF) is adopted as a filter method. A Jacobian matrix of measurement equations in the EKF consists of terrain slope terms, and accurate slope estimation is essential to keep filter stability. Two slope estimation methods are proposed in this study. Both methods are based on the least-squares approach. One is planar regression searching the best plane, in the least-squares sense, representing the terrain map over the region, determined by position error covariance. It is shown that the method could provide a more accurate solution than the previously developed linear regression approach, which uses lines rather than a plane in the least-squares measure. The other proposed method is weighted planar regression. Additional weights formed by Gaussian pdf are multiplied in the planar regression, to reflect the actual pdf of the position estimate of EKF. Monte Carlo simulations are conducted, to compare the performance between the previous and two proposed methods, by analyzing the filter properties of divergence probability and convergence speed. It is expected that one of the slope estimation methods could be implemented, after determining which of the filter properties is more significant at each mission.

Parameter Estimation and Prediction methods for Hyper-Geometric Distribution software Reliability Growth Model (초기하분포 소프트웨어 신뢰성 성장 모델에서의 모수 추정과 예측 방법)

  • Park, Joong-Yang;Yoo, Chang-Yeul;Lee, Bu-Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2345-2352
    • /
    • 1998
  • The hyper-geometric distribution software reliability growth model was recently developed and successfully applied Due to mathematical difficultv of the maximum likclihmd method, the least squares method has hem suggested for parameter estimation by the previous studies. We first summarize and compare the minimization criteria adopted by the previous studies. It is theo shown that the weighted least squares method is more appropriate hecause of the nonhomogeneous variability of the number of newly detected faults. The adequacy of the weighted least squares method is illustrated by two numerical examples. Finally, we propose a new method fur predicting the number of faults newly discovered by next test instances. The new prediction method can be used for determining the time to stop testing.

  • PDF

Estimation of nonlinear GARCH-M model (비선형 평균 일반화 이분산 자기회귀모형의 추정)

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.831-839
    • /
    • 2010
  • Least squares support vector machine (LS-SVM) is a kernel trick gaining a lot of popularities in the regression and classification problems. We use LS-SVM to propose a iterative algorithm for a nonlinear generalized autoregressive conditional heteroscedasticity model in the mean (GARCH-M) model to estimate the mean and the conditional volatility of stock market returns. The proposed method combines a weighted LS-SVM for the mean and unweighted LS-SVM for the conditional volatility. In this paper, we show that nonlinear GARCH-M models have a higher performance than the linear GARCH model and the linear GARCH-M model via real data estimations.

Comparison of linear and non-linear equation for the calibration of roxithromycin analysis using liquid chromatography/mass spectrometry

  • Lim, Jong-Hwan;Yun, Hyo-In
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Linear and non-linear regressions were used to derive the calibration function for the measurement of roxithromycin plasma concentration. Their results were compared with weighted least squares regression by usual weight factors. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature, y = ax$^{b}$ + c (b $\neq$ 1) is compared with the commonly used linear equation, y = ax + b, as well as the quadratic equation, y = ax$^{2}$+ bx + c. In the calibration curve (range of 0.01 to 10 ${\mu}g/mL$) of roxithromycin, both heteroscedasticity and nonlinearity were present therefore linear least squares regression methods could result in large errors in the determination of roxithromycin concentration. By the non-linear and weighted least squares regression, the accuracy of the analytical method was improved at the lower end of the calibration curve. This study suggests that the non-linear calibration equation should be considered when a curve is required to be fitted to low dose calibration data which exhibit slight curvature.