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Abstract: This paper proposes a weighted least-
squares (WLS) method for designing variable one-
dimensional (1-D) FIR digital filters with simulta-
neously variable magnitude and variable non-integer
phase-delay responses. First, the coefficients of a vari-
able FIR filter are represented as the two-dimensional
(2-D) polynomials of a pair of spectral parameters: one
is for tuning the magnitude response, and the other is
for varying its non-integer phasc-delay response. Then
the optiinal coefficients of the 2-D polynomials are
found by minimizing the total weighted squared error of
the variable frequency response. Finally. we show that
the resulting variable FIR filter can be imiplemented in
a parallel form. which is suitable for high-speed signal
processing,

1 Introduction

Since variable digital filters have been found very use-
ful in various fields. the design and implementation of
variable digital filters have received considerable atten-
tion recently. Many methods have been developed for
designing variable filters with either variable magnitude
[1. 2] or variable fractional-delay (FD) responses [3. 4]
only. In applying variable FD filters, one needs to cas-
cade a normal digital filter with a variable FD filter
to perform the standard operations because the vari-
able FD filter itself does not possess frequency selec-
tivity. and thus cannot rectify the shape of the overall
magnitude response. The cascaded normnal frequency-
selective digital filter is used to cut off some frequency
components and pass through the desired ones. Thus
the standard operations require two digital filters: one is
for shaping magnitude response, and the other is for de-
laying digital signals by any time period which does not
have to be an integer multiple of the sampling interval.
In some applications, both magnitude and FD response
are required to be tunable. which compels us to cas-
cade two variable filters: one is for varying magnitude
response. and the other is for varying fractional-delay.
Therefore, it is strongly desirable to design one single
variable filter that can perform the above two variable
operations simultaneously. :

This paper proposes a WLS method for designing
variable 1-D FIR filters whose magnitude and non-
integer phase-delay responses can be continuously and
independently tuned. First. we assume that the de-
sired variable frequency response is specified by a pair
of spectral parameters; one is used for tuning the mag-
nitude response. and the other is for tuning fractional-
delay. Then the coefficients of the variable 1-D FIR
filter are expressed as the 2-D polynomials of the two
spectral paramieters. Finally. the optimal coeflicients of

the 2-D polynomials are determined by minimizing the
total weighted squared error of the variable frequency
response. We will also show that the resulting variable
filter can be implemented in a parallel form that con-
sists of constant part and variable part. In practical
applications, only the variable part needs to be varied
for obtaining different (tunable) magnitude and non-
integer phase-delay responses. As a result, the obtained
parallel-form variable filters are suitable for high-speed
signal processing.

2 Design and Implementation

Assume that the ideal variable frequency response is

(1)

where w, w € [0,7)], is the normalized angular fre-
quency, and ¥, ¥ € [U,,:n, Upnge), is a spectral pa-
rameter that specifies the desired variable magnitude
response Mr(w.¥). Also, f7(w.d) represents the ideal
variable linear phase

Hi(w.¥.d) = Mj(w, ¥)edb1iwd

01(w.d) = —dw

where d, d € [—0.5.0.5]. is the desired fractional
phase-delay. Obviously, the desired magnitude response
Mp(w,¥) and the desired fractional phase-delay re-
sponse can be independently varied by using the spec-
tral parameters ¥ and d, respectively. Our objective
here is to find the optimal FIR filter

K/2
H(z¥.d)= ) a(¥.dz™* (2)
k=—K/2
whose coefficients are the 2-D polynomials
P Q
a(¥.d) =Y ) b(k.p.q)¥¥d! (3)
p=0 q=0

such that the weighted squared error

X ¥inax 0.5
re= [ W (0, B, ) el 0, d)Pdada
0 & ~0.5

min
o (4
is minimmized. where the frequency response error is

e(w,¥.d) = Hw.¥.d) - H(w.¥.d)
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and H(w. ¥, d) 1s the actual variable frequency response
of the filter (2). In addition, the W(w.¥.d) in (4) is a
completely separable non-negative weighting function

W(w. ¥, d) = Wy (w)Wa (8)Ws(d).

Substituting (3) into (2) obtains the variable filter

K/2 P
(2.9.d) = Z ZZI)I. p.q)z~Fordt  (5)
~K/2p=0q¢=0

whose frequency response is

K/2 P Q

b(k.p.q)e e R @rqe, (6)
> 22

k=—K/2 p=0 q=0

H{w. ¥.d) =

Consequently, our objective is to find the optimal co-
efficients b(k. p. q) such that the total weighted squared

error (4) is minimized. From (6) it is known that the
munber of the total coefficients b(k.p.q) to be deter-
mined is (K + 1)}(P + 1)(Q + 1). The computational

complexity required for finding b(k. p. ¢) can be reduced
by exploiting the coefficient symmetries

b(~k.p.q) =(=1)?-blk.p.q). k=0~K/2 (7)
which can be proved by using the relation
H(w, ¥, —d) = H(w. ¥.d).

Therefore, the actual variable frequency response can

be simplified as

K/2 p Q
Hw. O.d) =YY b(k.p.q)(w)Pd (8
k=0 p=0 ¢=0
where
1 if k=0
Qpw) = { e kv +(=1)¢- eikw if k#0. {9)

By exploiting the coefficient synunetries (7). we only
need to find almost half of the coefficients b(k, p. ¢), and
thus can reduce the computational complexity required
in the design.

To minimize J; in (4). we first sample the parameters

we[0,7]. ¥E[Pnin ¥raz)e d€[-0.5.0.5]
to obtain the discrete points
(I—1)x
oL (Frmaz = Pmin) (1 — 1) -
¥, =V, ¥ : W —1 . m=1~M
dn = =05+ 2. n=1~N.
(10)

Thus we get the corresponding samples as

Hil.m.n) = Mpw.¥,,)e0(@rdn)

K/2 p

ZZZbk . Q) (w) PP d?

k=0 p=0 ¢=0

Wi (1) Wa (8o ) W ().

H(l.m,n) =

W({l.m.n) =

Then we want to find the coefficients b(k, p, ¢) by mini-
mizing

L M N 2
= Z Z ZW(l m.n)|H({, m,n)— H{(l,m,n)
=1 m=1n=1
L M N
Z Z ZW L.m.n)
=1 mm=1n=1
K/2 P Q z
Zb(k. ) (w)VP dd — Hp(l.m,n)
k=0 p=0 ¢=0
(11)

where Jy is the discrete version of the continuous er-
ror function J; in (4). To simplify the design problem
formulation. we perforiu the one-to-one index mappings

(Lm.n) — 4. 41 =12,--,1)
(kp.q) —> iz, d2=12,---,1

where I; = LMN. I, = (K/2+1)(P+1)(Q+1). Based
on the index mappings (12), we can obtain

(12)

b(k,p.q) — c(iz2) )
Qp(w )P, de — P(i1,12)

Hi(l.m.n) — h(iy) (13)
W({l.m,n) — v(t).
Thus we can write the crror function Jg as
I, I, 2
Ja= ) wli1) | D eliz)®(irsiz) = hir)
Ilz.:l I:::l
=3 (i) [Ecuz)@(il.iz) —h(i)|{ x  (14)
ip=1 i1=1
I 1
[Zc(iz)df(il..iz) — h*(i1)
=1 J

where [. |* means the complex-conjugate of the coniplex
number [ . ]. To minimize the error function Jg, we
differentiate Jq with respect to the i-th entry of the
coefficient vector ¢ and then set the differentiation to
zero, which leads to

I I
Re [Zc(iz)zv(il)é(il,i)@*(il,iz)} =
(15)

i2=1 i1=1
I
Re [Zv(il)‘ﬁ(z’l. z’)h*(il)}
=1

where Ro[ ] denotes the real part of [ . ]. Substituting

t = 1.2,--- . I; to the equation {15) obtains

Re[®"V®|c = Re[®"Vh] (16)
where

B(1.1)  ®(1.2) ®(1,1)

8(2.1) ®(2.2) ®(2, 1)

%= : : :
B(1.1) ®(I1,2) - (D)
v(1)
v v(2)
v(Iy)
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e(1) h(1)

c(2) h(2)
c= : h = .

C(jz) h(:ll)

The equation (16) leads to the optimal solution

c={Re[®*V®]} ' Re[® Vh]| (17)
but the direct computation (17) is not efficient enough.
which can be further modified as follows.

Let the 7;-th columm vector of " be e;,. Then

11 II
VE=) vli)e,e,. Vh=) uli)hii)e,.
i|=1 i|=1

(18)
Thus the equation (17) can be re-written as

I -1 Iy
c= {Re [Ev(il)eile;lJ} -Re [Ev(i)h(il)ei]}

3'1:1 i1=1

I, -1 I
= { Z’v(h)Re [ei,eZ,] } ) { Z"’(il)Re [h(":l)eh] }
i
(19)
where

I
r= Zz.v(vll)R.e[e,-le;“]

‘i1=1

I,
B = Zv(il)Re[h(il)eil].

1:[=1

Since the matrix I is positive definite. it can be decom-
posed as

r=u'U (20)

by using the Cholesky decomposition, where U is an
upper triangular matrix, thus

r!'=uv'v-t. (21)

l()Jon:a;cqueutly. the optimal vector ¢ can be determined

’ c=UHUT'B).

The indirect inversion (21) of the matrix T' is very im-
portant for avoiding the ill-conditioning munerical prob-
lem when the condition number of T is large, thus the
final expression (22) provides a numerically stabilized
optimal solution.

Once the optimal vector ¢ is obtained, the reverse
order of (13) can be applied to determine the optimal
coefficients b(k.p.q) as

(22)

cliz) — b(k.p.q). (23)

Since the resulting variable FIR filter (5) is non-
causal, it cannot be applied in real-time signal pro-
cesing. However, a causal one can be easily obtained
by just shifting the coefficients b(k.p.q) by K/2 along
the k axis. i.e.,

(k. p.q) = b(k - K/2.p.q).

k=0.1.---.K (24)

which results in the final causal variable filter

K P Q
G(z,¥,d) =D > Y a(k,p.q)z”*¥Pds.

k=0 p=0 q=0

(25)

Note that G(z.¥.d) has the samne variable magnitude
response as H(z.¥,d), but its desired variable non-
integer phase-delay is

D:—IS'F(L

5 d € [-0.5,0.5].

From (25) we can re-arrange G(z, ¥,d) as

P Q K
G(z.0.d)=)_ > [Za(k,p, q)z""'] TP, (26)

p=0 q=0 Li=0
Letting
K
Hpy(2) = a(k.p.g)z™" (27)
k=0
we obtain
P Q
G(z.9.d) =Y > Hpy(2)¥d" (28)
p=0g9=0

where Hpq(z) can be regarded as constant filters,
and PPd? correspond to the weighting coefficients for
Hy,y(z). Since the weighting coeflicients $Pd? are vari-
able for different values of ¥ and d, thus the variable fil-
ter G{z, ¥, d) consists of constant part Hyq(z) and vari-
able part ¥Pd4, it can be implemented in the parallel
form as Fig. 1. In digital signal processing applications,
Hoo(2). Hoi(2), -+ - . Hpg(2) are fixed, and ¥°d°, ¥°4!,
-+« . WPJ? are varied (variable part). The parallel-form
implementation is suitable for high-speed signal process-
ing.

3 Design Example

In this section, we present a numerical example to illus-
trate the effectiveness of the proposed design method.

ariable Lowpass Filter]:  The desired variable
owpass frequency response

Hi(w. ¥.d) = Mj(w, \I;)ejﬂ’l(w,d)
is specified by

1 0w w
Wy — W

P} = —_—
) 00.247r

Mj(w. wp Lw L ws

wsSw<sm

wp = 0.26m + ¥, w, = 0.507 + ¥, ¥ € [-0.167,0.167]
01 (w,d) = —dw. de€[-05,05], wel0,n]

(29)
where the spectral parameter ¥ controls the passband
and the stopband widths, but the transition band width
is fixed (0.24x) [1, 2].

Following the proposed design procedures, we first
sample the parameters w, ¥, and d to get a set of dis-
crete points wy, ¥,,. d,,, where L = 51, M =17, N = 11.
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Then the variable filter of order (K., P. Q) = (30.4.4) is
designed. It should be noted that the filter order should
be chosen by designers with the tradeoff hetween design

3
accuracy and computational complexity. In addition. &
the weighting function =

W(w. T.d) = W, (w)Ws(T)Ws(d)

| i
is carefully selected as }
=] B\ . e

1w ¢ [wp.ow,) g g, /é:\

Wl (wl) = { r . _9.' . . B )

0w fupew +
Wy (¥,,)=[210 200 45 30 25 20 0 15 5 ._ e 1
0 0 0 30 1 20 40 25] | fS [@}
l - LX) by
Wild,) =1 foralld, : - z_|
(30) 4 A
such that the frequency respouse errors could be almost e

uniformly distributed along the w, ¥, and d axes. In
this casc, the maximuwm and mininnun values of the
normalized root-mean-squared (RMS) errors of variable
magnitude responses are 0.3582% and 0.2289%. respec-
tively. Fig. 2 illustrates the actual variable magnitude
respounse for d = 0, and Fig. 3 depicts the passband non-
integer phase-delays for ¥ = 0, which are considerably
flat (constant).

Input

Eracnionl-Delsy &0

4 Conclusion

We have proposed a closed-form WLS method for de-
signing 1-D FIR digital filters with simultaneously vari-
able magnitude and non-integer phase-delay responses.
The resulting variable FIR filters can be implemented in
parallel forms, which are suitable for high-speed signal
processing. Since the variable FIR filter designed by this
method have much more flexibilities than the conven-
tional ones with either variable magnitude or variable
FD responses, the variable FIR filters obtained here are
widely useful in the applications where both magnitude
and non-integer phase-delay responses are required to
be tunable.
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