• Title/Summary/Keyword: weighted dictionary

검색결과 19건 처리시간 0.022초

Double 𝑙1 regularization for moving force identification using response spectrum-based weighted dictionary

  • Yuandong Lei;Bohao Xu;Ling Yu
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.227-238
    • /
    • 2024
  • Sparse regularization methods have proven effective in addressing the ill-posed equations encountered in moving force identification (MFI). However, the complexity of vehicle loads is often ignored in existing studies aiming at enhancing MFI accuracy. To tackle this issue, a double 𝑙1 regularization method is proposed for MFI based on a response spectrum-based weighted dictionary in this study. Firstly, the relationship between vehicle-induced responses and moving vehicle loads (MVL) is established. The structural responses are then expanded in the frequency domain to obtain the prior knowledge related to MVL and to further construct a response spectrum-based weighted dictionary for MFI with a higher accuracy. Secondly, with the utilization of this weighted dictionary, a double 𝑙1 regularization framework is presented for identifying the static and dynamic components of MVL by the alternating direction method of multipliers (ADMM) method successively. To assess the performance of the proposed method, two different types of MVL, such as composed of trigonometric functions and driven from a 1/4 bridge-vehicle model, are adopted to conduct numerical simulations. Furthermore, a series of MFI experimental verifications are carried out in laboratory. The results shows that the proposed method's higher accuracy and strong robustness to noises compared with other traditional regularization methods.

Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류 (Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm)

  • 고수정;이정현
    • 한국멀티미디어학회논문지
    • /
    • 제4권2호
    • /
    • pp.171-181
    • /
    • 2001
  • 기존의 베이지만 문서 분류를 위한 단어 군집 방법은 많은 시간과 노력을 요구하며, 단어 간의 의미 관계를 정확하게 반영하지 못하는 문제점이 있다. 본 논문에서는 마이닝 기법으로 구축된 연관 단어 지식 베이스를 기반으로 하는 베이지안 문서 분류 방법을 제안한다. 제안된 베이지안 문서 분류 방법은 문서를 분류하기 전에 훈련 문서를 사용하여 가중치가 부여된 연관 단어 지 식 베이스를 구축한다. 그 다음으로, 베이지안 확률을 이용하는 분류자는 구축된 연관 단어 지식 베이스를 기반으로 문서를 클래스별로 분류한다. 제안된 방법의 성능을 평가하기 위해, 상호 정보 계산에 의한 단어 사전을 이유한 가중치가 부여된 베이지안 문서 분류 방법, 가중치가 부여된 베이지안 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다. 그 결과, 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지안 분류 방법이 상호 정보에 의한 단어 사진을 이용하는 가중치가 부여된 베이지안 분류 방법보다는 0.87%, 가중치가 부여된 베이지안 분류 방법보다는 2.77%, 단순 베이지안 방법보다는 5.97% 높은 성능 차이를 보였다.

  • PDF

능동소나를 위한 가중 딕션너리를 사용한 두 수신기 간 신호 지연 추정 방법 (Time delay estimation between two receivers using weighted dictionary method for active sonar)

  • 임준석;김성일
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.460-465
    • /
    • 2021
  • 능동 소나에서 시간 지연 추정은 목표와 소나 사이의 거리를 알아내기 위해서 사용하고 있다. 능동 소나에서 시간 지연을 추정할 때 주파수 영역에서 계산하면 시간 지연 추정이 주파수 추정으로 바꾸어 생각할 수 있어서 비교적 쉽게 사용할 수 있다. 그러나 이 방법은 잡음에 의해 오류가 급증할 요소가 포함되어 있다. 본 논문에서는 이런 오류 급증 현상을 줄일 수 있는 가중 딕션너리를 사용하는 희소성 기반 추정 방법을 새롭게 제안한다. 또 이 방법을 두 개의 수신기로 확대 적용하여 두 수신기 간 시간 지연을 추정하는 알고리즘을 제안한다. 그리고 백색 잡음 환경에서 제안한 방법을 적용한 것과 일반 상호 상관 알고리즘(Generalized Cross Correlation-Phase transform, GCC-PHAT) 및 일반 주파수 영역 방법을 포함한 제안한 방법을 적용하지 않은 방법들을 서로 비교한다. 그리고 새로 제안한 방법이 다른 비교 대상 알고리즘들보다 약 15 dB에서 약 60 dB의 성능 이득이 있음을 보인다.

Person Re-identification using Sparse Representation with a Saliency-weighted Dictionary

  • Kim, Miri;Jang, Jinbeum;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권4호
    • /
    • pp.262-268
    • /
    • 2017
  • Intelligent video surveillance systems have been developed to monitor global areas and find specific target objects using a large-scale database. However, person re-identification presents some challenges, such as pose change and occlusions. To solve the problems, this paper presents an improved person re-identification method using sparse representation and saliency-based dictionary construction. The proposed method consists of three parts: i) feature description based on salient colors and textures for dictionary elements, ii) orthogonal atom selection using cosine similarity to deal with pose and viewpoint change, and iii) measurement of reconstruction error to rank the gallery corresponding a probe object. The proposed method provides good performance, since robust descriptors used as a dictionary atom are generated by weighting some salient features, and dictionary atoms are selected by reducing excessive redundancy causing low accuracy. Therefore, the proposed method can be applied in a large scale-database surveillance system to search for a specific object.

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.

간판영상에서 한글 인식 성능향상을 위한 가중치 기반 음소 단위 분할 교정 (Weighted Disassemble-based Correction Method to Improve Recognition Rates of Korean Text in Signboard Images)

  • 이명훈;양형정;김수형;이귀상;김선희
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.105-115
    • /
    • 2012
  • 본 논문에서는 휴대폰 카메라를 통해 간판영상의 한글문자를 인식한 후 오인식 된 결과를 교정하는 방법으로 인식 후보를 음소단위 분할하고 연산 가중치를 적용한 weighted Disassemble Levenshtein Distance(wDLD)를 제안한다. 제안된 방법은 인식된 문자열을 음소 단위로 분할한 후 입력 형태의 거리값을 산출하여, 가장 유사한 상호명을 데이터베이스에서 검출 한다. 제안된 방법의 효율성을 검증하기 위해, 전국의 상호명 중 중복되는 상호명을 제거한 130만개의 상호명을 이용하여 데이터베이스 사전을 구축하였다. 또한 대표적인 문자열 비교 알고리즘인 Levenshtein Distance와 음소를 분할하여 적용한 Disassemble Levenshtein Distance 방법, 그리고 본 논문에서 제안한 인식 후보의 음소 단위 분할 방법과 연산 가중치를 적용한 weighted Disassemble Levenshtein Distance의 교정율을 비교 분석 하였다. 그 결과 제안된 weighted Disassemble Levenshtein Distance(wDLD)은 Levenshtein Distance와 Disassemble Levenshtein Distance방법에 비해 각각 평균 29.85%와 6%의 인식률의 향상을 보였다.

Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection

  • Wang, Qianghui;Hua, Wenshen;Huang, Fuyu;Zhang, Yan;Yan, Yang
    • Current Optics and Photonics
    • /
    • 제4권3호
    • /
    • pp.210-220
    • /
    • 2020
  • Aiming at the problem that the Local Sparse Difference Index algorithm has low accuracy and low efficiency when detecting target anomalies in a hyperspectral image, this paper proposes a Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection algorithm, to improve detection accuracy for a hyperspectral image. First, the band subspace is divided according to the band correlation coefficient, which avoids the situation in which there are multiple solutions of the sparse coefficient vector caused by too many bands. Then, the appropriate double-window model is selected, and the background dictionary constructed and weighted according to Euclidean distance, which reduces the influence of mixing anomalous components of the background on the solution of the sparse coefficient vector. Finally, the sparse coefficient vector is solved by the collaborative representation method, and the sparse difference index is calculated to complete the anomaly detection. To prove the effectiveness, the proposed algorithm is compared with the RX, LRX, and LSD algorithms in simulating and analyzing two AVIRIS hyperspectral images. The results show that the proposed algorithm has higher accuracy and a lower false-alarm rate, and yields better results.

상호정보량과 복합명사 의미사전에 기반한 동음이의어 중의성 해소 (Homonym Disambiguation based on Mutual Information and Sense-Tagged Compound Noun Dictionary)

  • 허정;서희철;장명길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권12호
    • /
    • pp.1073-1089
    • /
    • 2006
  • 자연언어처리의 목적은 컴퓨터가 자연어를 이해할 수 있도록 하여, 인간에게 다양한 정보를 정확하고 빠르게 전달할 수 있도록 하고자 하는 것이다. 이를 위해서는 언어의 의미를 정확히 파악하여야 하는데, 어휘 의미 중의성 해소가 필수적인 기술이다. 본 연구는 상호정보량과 기 분석된 복합명사 의미사전에 기반한 동음이의어 의미 중의성 해소를 위한 기술을 소개한다. 사전 뜻풀이를 이용하는 기존 기술들은 어휘들간의 정확한 매칭에 의존하기 때문에 자료 부족 현상이 심각하였다. 그러나, 본 연구에서는 어휘들간의 연관계수인 상호정보량을 이용함으로써 이 문제를 완화시켰다. 또한, 언어적인 특징을 반영하기 위해서 상호정보량을 가지는 어휘 쌍의 비율 가중치, 의미 별 비율 가중치와 뜻풀이의 길이 가중치를 사용하였다. 그리고, 복합명사를 구성하는 단일명사들은 서로의 의미를 제약한다는 것에 기반하여 고빈도 복합명사에 대해서 의미를 부착한 의미사전을 구축하였고, 이를 동음이의어 중의성 해소에 활용하였다. 본 시스템의 평가를 위해 질의응답 평가셋의 200 여 개의 질의와 정답단락을 대상으로 동음이의어 의미 중의성 해소 평가셋을 구축하였다. 평가셋에 기반하여 네 유형의 실험을 수행하였다. 실험 결과는 상호 정보량만을 이용하였을 때 65.06%의 정확률을 보였고, 가중치를 활용하였을 때 85.35%의 정확률을 보였다. 또한, 복합명사 의미분석 사전을 활용하였을 때는 88.82%의 정확률을 보였다.

Neural-network-based Impulse Noise Removal Using Group-based Weighted Couple Sparse Representation

  • Lee, Yongwoo;Bui, Toan Duc;Shin, Jitae;Oh, Byung Tae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3873-3887
    • /
    • 2018
  • In this paper, we propose a novel method to recover images corrupted by impulse noise. The proposed method uses two stages: noise detection and filtering. In the first stage, we use pixel values, rank-ordered logarithmic difference values, and median values to train a neural-network-based impulse noise detector. After training, we apply the network to detect noisy pixels in images. In the next stage, we use group-based weighted couple sparse representation to filter the noisy pixels. During this second stage, conventional methods generally use only clean pixels to recover corrupted pixels, which can yield unsuccessful dictionary learning if the noise density is high and the number of useful clean pixels is inadequate. Therefore, we use reconstructed pixels to balance the deficiency. Experimental results show that the proposed noise detector has better performance than the conventional noise detectors. Also, with the information of noisy pixel location, the proposed impulse-noise removal method performs better than the conventional methods, through the recovered images resulting in better quality.