• Title/Summary/Keyword: weighted Bergman-Orlicz spaces

Search Result 2, Processing Time 0.018 seconds

PRODUCT-TYPE OPERATORS FROM WEIGHTED BERGMAN-ORLICZ SPACES TO WEIGHTED ZYGMUND SPACES

  • JIANG, ZHI-JIE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1383-1399
    • /
    • 2015
  • Let ${\mathbb{D}}=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$ be the open unit disk in the complex plane $\mathbb{C}$, ${\varphi}$ an analytic self-map of $\mathbb{D}$ and ${\psi}$ an analytic function in $\mathbb{D}$. Let D be the differentiation operator and $W_{{\varphi},{\psi}}$ the weighted composition operator. The boundedness and compactness of the product-type operator $W_{{\varphi},{\psi}}D$ from the weighted Bergman-Orlicz space to the weighted Zygmund space on $\mathbb{D}$ are characterized.

A CHARACTERIZATION OF WEIGHTED BERGMAN-PRIVALOV SPACES ON THE UNIT BALL OF Cn

  • Matsugu, Yasuo;Miyazawa, Jun;Ueki, Sei-Ichiro
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.783-800
    • /
    • 2002
  • Let B denote the unit ball in $C^n$, and ν the normalized Lebesgue measure on B. For $\alpha$ > -1, define $dv_\alpha$(z) = $c_\alpha$$(1-\midz\mid^2)^{\alpha}$dν(z), z $\in$ B. Here $c_\alpha$ is a positive constant such that $v_\alpha$(B) = 1. Let H(B) denote the space of all holomorphic functions in B. For $p\geq1$, define the Bergman-Privalov space $(AN)^{p}(v_\alpha)$ by $(AN)^{p}(v_\alpha)$ = ${f\inH(B)$ : $\int_B{log(1+\midf\mid)}^pdv_\alpha\;<\;\infty}$ In this paper we prove that a function $f\inH(B)$ is in $(AN)^{p}$$(v_\alpha)$ if and only if $(1+\midf\mid)^{-2}{log(1+\midf\mid)}^{p-2}\mid\nablaf\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case 1<p<$\infty$, or $(1+\midf\mid)^{-2}\midf\mid^{-1}\mid{\nabla}f\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case p = 1, where $nabla$f is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].