• Title/Summary/Keyword: weight-belt

Search Result 68, Processing Time 0.024 seconds

Complexity Pattern of Center of Pressure between Genders via Increasing Running Speed (달리기 속도 증가에 따른 성별 CoP (Center of Pressure)의 복잡성 패턴)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Objective: The goal of this study was to determine the center of pressure (CoP) complexity pattern in approximate entropy technique between genders at different conditions of running speed. Background: It is conducted to evaluate the complexity pattern of CoP in the increment of running speed to have insights to injury prediction, stability, and auxiliary aids for the foot. Method: Twenty men (age=22.3±1.5 yrs.; height=176.4±5.4 cm; body weight=73.9±8.2 kg) and Twenty women (age=20.8±1.2 yrs.; height=162.8±5.2 cm; body weight=55.0±6.3 kg) with heel strike pattern were recruited for the study. While they were running at 2.22, 3.33, 4.44 m/s speed on a treadmill (instrumented dual belt treadmills, USA) with a force plate, CoP data were collected for the 10 strides. The complexity pattern of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral and antero-posterior CoP in the increment of running speed showed significantly difference within genders (p<.05), but there were not statistically significant between genders at all conditions of running speed. Conclusion: Based on the results of this study, CoP complexity pattern in the increment of running speed was limited to be characterized between genders as an indicator to judge the potential injury and stability. Application: In future studies, it is needed to investigate the cause of change for complexity of CoP at various running speed related to this study.

Complexity Comparison of Center of Pressure between Fallers and Non-fallers during Gait (보행 시 낙상 유무에 따른 압력중심점의 복잡성 비교)

  • Park, Sang Kyoon;Ryu, Sihyun;Kim, Jongbin;Yoon, Sukhoon;Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the effect of the falls on the center of pressure (CoP) complexity during gait using non-linear approximate entropy (ApEn). Method: 20 elderly women with experience of falling ($age=72.55{\pm}5.42yrs$; $height=154.40{\pm}4.26cm$; $body\;weight=57.40{\pm}6.21kg$; $preferred\;gait\;speed=0.52{\pm}0.17m/s$) and 20 elderly women with no experience of falling ($age=71.90{\pm}2.90yrs$; $height=155.28{\pm}4.73cm$; $body\;weight=56.70{\pm}5.241kg$; $preferred\;gait\;speed=0.56{\pm}0.13m/s$) were recruited for the study. While they were walking at their preferred gait speed on a treadmill (instrumented dual belt treadmills, Bertec, USA) with a force plate CoP data were collected for the 20 strides. The complexity of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral CoP in the fallers showed smaller about 16% compared to the non-fallers (p<.05). The ApEn of the antero-posterior CoP of the fallers showed smaller about 12% compared to the non-fallers, but the difference was not statistically significant. Conclusion: Based on the results of this study, the reduction of the medio-lateral CoP complexity in the elderly gait would be an index to determine the potential fall.

Design of a Transformable Track Mechanism for Wall Climbing Robots (변형 트랙 메커니즘을 이용한 등반로봇 설계)

  • Lee, Gi-Uk;Seo, Kun-Chan;Kim, Hwang;Kim, Sun-Ho;Jeon, Dong-Su;Kim, Hong-Seok;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.178-184
    • /
    • 2012
  • This paper presents a transformable track mechanism for wall climbing robots. The proposed mechanism allows a wall climbing robot to go over obstacles by transforming the track shape, and also increases contact area between track and wall surface for safe attachment. The track mechanism is realized using a timing belt track with one driving actuator. The inner frame of the track consists of serially connected 5R-joints and 1P-joint, and all joints of the inner frame are passively operated by springs, so the mechanism does not require any actuators and complex control algorithms to change its shape. Static analysis is carried out to determine design parameters which enable $90^{\circ}$ wall-to-wall transition and driving over projected obstacles on wall surfaces. A Prototype is manufactured using the transformable track on which polymer magnets are installed for adhesion force. The size of the prototype is $628mm{\times}200mm{\times}150mm$ ($Length{\times}Width{\times}Height$) and weight is 4kgf. Experiments are performed to verify its climbing capability focusing on $90^{\circ}$ wall to wall transition and driving over projected obstacle.

Real-time Worker Safety Management System Using Deep Learning-based Video Analysis Algorithm (딥러닝 기반 영상 분석 알고리즘을 이용한 실시간 작업자 안전관리 시스템 개발)

  • Jeon, So Yeon;Park, Jong Hwa;Youn, Sang Byung;Kim, Young Soo;Lee, Yong Sung;Jeon, Ji Hye
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.25-30
    • /
    • 2020
  • The purpose of this paper is to implement a deep learning-based real-time video analysis algorithm that monitors safety of workers in industrial facilities. The worker's clothes were divided into six classes according to whether workers are wearing a helmet, safety vest, and safety belt, and a total of 5,307 images were used as learning data. The experiment was performed by comparing the mAP when weight was applied according to the number of learning iterations for 645 images, using YOLO v4. It was confirmed that the mAP was the highest with 60.13% when the number of learning iterations was 6,000, and the AP with the most test sets was the highest. In the future, we plan to improve accuracy and speed by optimizing datasets and object detection model.

Development of Functional Maternity Wear for Working Women (직장 여성을 위한 기능적인 임부복 개발)

  • Suh, Chu-Yeon;Park, Soon-Jee;Lee, Hee-Jung
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.9
    • /
    • pp.37-52
    • /
    • 2007
  • This research developed maternity wear designed with a focus on the essential functions necessary for working women and adaptable to their body changes during pregnancy. Through Martin's anthropometry for 201 pregnant women, the size specifications for maternity wear was determined and a dress form was proposed, in order to provide the manufacturer with reference data and a prototype to verify their products' fit and suitability. From a monthly analysis on the body measurements of pregnant women, significant monthly differences and after pregnancy were found in weight, chest girth, bust girth, under bust girth, waist girth, and hip girth. Dress form was designed based on the average body measurements of women in their 6th to 10th month of pregnancy. The standard dimensions in the 8th month were 90cm (chest), 94cm (bust), 86cm (under bust), 97cm(waist: most protruding part on the side), and 99cm (hip). Compared with Japan's MAT-9 (for nine months), chest girth was the same, while the Korean waist girth and hip girth were larger by 2cm and 3cm, respectively. The woven fabric blouse was evaluated as having the best appearance, while the knitted fabric one was judged as being more comfortable it terms of functionality. For the pants, the design details of the lowered waist and curved waist belt were more functional. The tailored jacket was the best design for working women in terms of both looks and functionality. To summarize, maternity wear for working women, unlike general maternity clothes, should be designed with consideration for the wearer's somatotype and activity. Elastic materials were appropriate for functionality and dealing with physical changes. With the increasing of working pregnant women, such trials are expected to continue in this research area in order to develop functional maternity wear with multi-purposes such as breast-feeding, wearability after delivery and shielding from microwave.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

Effect of Wearing Ankle Weights on Underwater Treadmill Walking

  • Park, Que Tae;Kim, Suk Bum;O'Sullivan, David
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Objective: The main purpose of this study was to investigate the effects of wearing an ankle weight belt while performing gait in water by focusing on the effect of using ankle weights have on the gait kinematics and the muscle activities for developing optimum training strategies. Method: A total of 10 healthy male university students were recruited for the study. Each participant was instructed to perform 3 gait conditions; normal walking over ground, walking in water chest height, and walking in water chest height while using ankle weights. All walking conditions were set at control speed of $4km/h{\pm}0.05km/h$. The depth of the swimming pool was at 1.3 m, approximately chest height. The motion capture data was recorded using 6 digital cameras and the EMG was recorded using waterproof Mini Wave. From the motion capture data, the following variables were calculated for analysis; double and single support phase (s), swing phase (s), step length (%height), step rate (m/s), ankle, knee, and hip joint angles ($^{\circ}$). From the electromyography the %RVC of the lower limb muscles medial gastrocnemius, rectus femoris, erector spinae, semitendinosus, tibialis anterior, vastus lateralis oblique was calculated. Results: The results show significant differences between the gait time, and step length between the right and left leg. Additionally, the joint angular velocities and gait velocity were significantly affected by the water resistance. As expected, the use of the ankle weights increased all of the lower leg maximum muscle activities except for the lower back muscle. Conclusion: In conclusion, the ankle weights can be shown to stimulate more muscle activity during walking in chest height water and therefore, may be useful for rehabilitation purposes.

Study on the Shift Characteristics of a 2speed Manual Transmission apply to V-Blet (V-blet를 적용한 2단 수동변속기의 변속특성에 관한 연구)

  • Youm, Kwang-wook
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.55-60
    • /
    • 2020
  • As research and development of eco-friendly vehicles are expanding worldwide, additional devices of vehicles are reduced or deleted to increase the mileage, or research is being conducted to reduce weight. Among them, the multi-stage transmission that was applied to the internal combustion engine vehicle was deleted and replaced with a reducer, and the initial driving power is secured by increasing the torque through the control of the motor output value. However, since frequent motor speed change can result in a load increase, this study attempts to develop a compact and lightweight manual two-stage reducer with a general reducer structure. Therefore, a two-speed transmission with two gear ratio was designed by inserting a large gear and a small gear in a structure with a parallel shaft to connect the gears with a V-belt in the form of a parallel shaft reducer, and setting the gear ratio of the low and high gears respectively. In addition, power performance according to the rotational speed and load of the transmission was checked through a test, and the heat generation characteristics generated during driving were checked to verify the validity of the transmission.

Leg Structure based on Counterbalance Mechanism for Environmental Adaptive Robot (환경 적응형 로봇의 기계식 중력보상 기반 다리 구조)

  • Park, Hui-Chang;Oh, Jang-Seok;Cho, Yong-Jun;Yun, Hae-Yong;Hong, Hyung-Gil;Kang, Min-Su;Park, Kwan-Hyung;Song, Jae-Bok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.9-18
    • /
    • 2022
  • As the COVID-19 continues, the demand for robotic technology that can be applied in face-to-face tasks such as delivery and transportation, is increasing. Although these technologies have been developed and applied in various industries, the robots can only be operated in a tidy indoor environment and have limitations in terms of payload. To overcome these problems, we developed a 2 degree of freedom(DOF) environmental adaptive robot leg with a double 1-DOF counterbalance mechanism (CBM) based on wire roller. The double 1-DOF CBM is applied to the two revolute joints of the proposed robot leg to compensate for the weight of the mobile robot platform and part of the payload. In addition, the link of the robot leg is designed in a parallelogram structure based on a belt pulley to enable efficient control of the mobile platform. In this study, we propose the principle and structure of the CBM that is suitable for the robot leg, and design of the counterbalance robot leg module for the environment-adaptive control. Further, we verify the performance of the proposed counterbalance robot leg by using dynamic simulations and experiments.

Effect on the Center of Pressure of Vision, Floor Condition, and the Height of Center of Mass During Quiet Standing

  • Kim, Seung-su;Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.154-160
    • /
    • 2021
  • Background: Theoretically, balance is affected by the height of center of mass (COM) during quiet standing. However, no one examined this in humans with variables derived from the center of pressure (COP). Objects: We have conducted balance experiment to measure COP data during quiet standing, in order to examine how the COP measures were affected by the height of COM, vision, floor conditions, and gender. Methods: Twenty individuals stood still with feet together and arms at sides for 30 seconds on a force plate. Trials were acquired with three COM heights: 1% increased or decreased, and not changed, with two vision conditions: eyes closed (EC) and eyes open (EO), and with two floor conditions: unstable (foam pad) and stable (force plate) floor. Outcome variables included the mean distance, root mean square distance, total excursion, mean velocity, and 95% confidence circle area. Results: All outcome variables were associated with the COM height (p < 0.0005), vision (p < 0.0005), and floor condition (p < 0.003). The mean velocity and 95% confidence circle area were 5.7% and 21.8% greater, respectively, in raised COM than in lowered COM (24.6 versus 23.2 mm/s; 1,013.4 versus 832.3 mm2). However, there were no interactions between the COM height and vision condition (p > 0.096), and between the COM height and floor condition (p > 0.183) for all outcome variables. Furthermore, there was no gender difference in all outcome variables (p > 0.186). Conclusion: Balance was affected by the change of COM height induced by a weight belt in human. However, the effect was not affected by vision or floor condition. Our results should inform the design of balance exercise program to improve the outcome of the balance training.