• Title/Summary/Keyword: weight sensor

Search Result 578, Processing Time 0.022 seconds

Evaluation of the Amount of Nitrogen Top Dressing Based on Ground-based Remote Sensing for Leaf Perilla (Perilla frutescens) under the Polytunnel House

  • Kang, Seong-Soo;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.598-607
    • /
    • 2016
  • This study was conducted to evaluate the amount of nitrogen (N) top dressing based on the normalized difference vegetation indices (NDVI) by ground based sensors for leaf perilla under the polyethylene house. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization with 3 and 4 replications in Gumsan-gun and Milyang-si field, respectively. Dry weight (DW), concentration of N, and amount of N uptake by leaf perilla as well as NDVIs from sensors were measured monthly. Difference of growth characteristics among treatments in Gumsan field was wider than Milyang. SPAD-502 chlorophyll meter reading explained 43.4% of the variability in N content of leaves in Gumsan field at $150^{th}$ day after seedling (DAS) and 45.9% in Milyang at $239^{th}$ DAS. Indexes of red sensor (RNDVI) and amber sensor (ANDVI) at $172^{th}$ day after seedling (DAS) in Gumsan explained 50% and 57% of the variability in N content of leaves. RNDVI and ANDVI at $31^{th}$ DAS in Milyang explained 60% and 65% of the variability in DW of leaves. Based on the relationship between ANDVI and N application rate, ANDVI at $172^{th}$ DAS in Gumsan explained 57% of the variability in N application rate but non significant relationship in Milyang field. Average sufficiency index (SI) calculated from ratio of each measurement index per maximum index of ANDVI at $172^{th}$ DAS in Gumsan explained 73% of the variability in N application rate. Although the relationship between NDVIs and growth characteristics was various upon growing season, SI by NDVIs of ground based remote sensors at top dressing season was thought to be useful index for recommendation of N top dressing rate of leaf perilla.

Research on Impact Sensors for Developing the Electronic Body Protector of Taekwondo (태권도 전자호구 개발을 위한 충격감지 센서 연구)

  • Ki, Jae-Sug;Jeong, Dong-Hwa;Lee, Hyun-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.648-655
    • /
    • 2019
  • This paper proposes the differential development of a Taekwondo electronic body protector. For this development, the most suitable sensor system was selected after analyzing and testing various sensor methods (magnetic sensors, electric capacity sensors, contact switch sensors, and piezo-film sensors) that could be applied in the electronic body protector, the selected sensors were distributed to the body and feet to make a more precise hit score, unlike the existing system in which all sensors are centralized on the body. Furthermore, it aims to illuminate using a lightweight film-type piezoelectric sensor on the body protector. In the case of an existing electronic body protector, all sensors and network device were concentrated on the body protector, so users need to purchase a set if they want it. On the other hand, the proposed system cloud can be used individually using a smart scoring WEP program. The effects of decreasing weight by up to 20% were compared with those of the existing system. Setting up a test facility is very difficult, so more study will be needed to analyze the effects of a hit.

Design and Implementation of BNN-based Gait Pattern Analysis System Using IMU Sensor (관성 측정 센서를 활용한 이진 신경망 기반 걸음걸이 패턴 분석 시스템 설계 및 구현)

  • Na, Jinho;Ji, Gisan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.365-372
    • /
    • 2022
  • Compared to sensors mainly used in human activity recognition (HAR) systems, inertial measurement unit (IMU) sensors are small and light, so can achieve lightweight system at low cost. Therefore, in this paper, we propose a binary neural network (BNN) based gait pattern analysis system using IMU sensor, and present the design and implementation results of an FPGA-based accelerator for computational acceleration. Six signals for gait are measured through IMU sensor, and a spectrogram is extracted using a short-time Fourier transform. In order to have a lightweight system with high accuracy, a BNN-based structure was used for gait pattern classification. It is designed as a hardware accelerator structure using FPGA for computation acceleration of binary neural network. The proposed gait pattern analysis system was implemented using 24,158 logics, 14,669 registers, and 13.687 KB of block memory, and it was confirmed that the operation was completed within 1.5 ms at the maximum operating frequency of 62.35 MHz and real-time operation was possible.

Development of the Integrated Exhaust System and Techniques of Nitrogen and Condensate for Fuel Cell Electric Vehicle (연료전지 자동차용 질소/응축수 통합배출시스템 및 기술 개발)

  • Shim, Hyo Sub;Kim, Hyo Sub;Kim, Jae Hoon;Kwon, Bu Kil;Lee, Hyun Joon;Kim, Chi Myung;Park, Yong Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.516-524
    • /
    • 2014
  • Proper discharge of nitrogen gas and water condensate is required in a conventional fuel cell system for performance, stability and durability of fuel cell stacks. Present study covers the development of integrated unit and its functioning logic for simultaneous nitrogen gas purge and water condensate drainage in a fuel cell vehicle system. Configuration of condensate drainage pipe, purge valve and level sensor is considered and optimized in physical integration. As a key factor, discharge time is considered and optimized based on the test result of constant-current operation with various operating temperature in logic development. Consequently, derived optimal values are applied and verified in actual vehicle drive mode test. Increase of system design flexibility, weight reduction and cost reduction are anticipated with this study. Additional study for physical and logical improvement is currently being implemented.

Pressure Characteristics on Korean High-Speed Railway Acoustic Screen Using 1/61 Scaled-Down Moving Model Rig

  • Jang, Yong-Jun;Kim, Hag-Beom;Jung, Woo-Sung;Kim, Dong-Hyeon
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • The experiments for aerodynamic characteristics of railway acoustic screen are performed using 1/61 scaled-down moving model rig facility which employs an axis symmetry and one wire guidance method. The launching mechanism is an air-gun type. The train model for the experiment is the high speed train (Korea Train Express: KTX) and the tested speed is about 300 km/h. The tested train length is 61 em which is corresponding to two units of KTX train. The cross sectional area and weight of train model are 0.00264 $m^2$ and 287 g, respectively. The Reynolds number based on the model train length is $1.2{\times}10^7$. The strength of pressure wave is measured using piezo typed pressure sensor. The measured pick value of pressure was as high as 365 Pa in the shortest gap between the acoustic screen and model train. The measured pressure is well compared with the field test data of mc 779-1 [2] values. However, the experimental data were slightly lower than the mc 779-1 values. The results show the model test can be used as a substitute for the field test.

  • PDF

Influence of time-of-day on respiratory function in normal healthy subjects

  • Kwon, Yong Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.6
    • /
    • pp.374-378
    • /
    • 2013
  • Purpose: Human body have biological rhythmic pattern in a day, which is affected by internal and external environmental factors. We investigated whether respiratory function was fluctuated according to the influence of time-of-day (around at 9 am, 1 pm, and 6 pm) in health subjects, using pulmonary function test (PFT). Methods: Eighteen healthy volunteers (8 men, mean ages; $22.4{\pm}1.6$, mean heights; $166.61{\pm}9.60$, mean weight; $59.3{\pm}10.3$) were recruited. Pulmonary function test (PFT) was measured at three time points in day, around 9 am, 1 pm, and 6 pm in calm research room with condition of under 55dB noise level, using a spirometer (Vmax 229, SensorMecis, USA). Forced vital capacity (FVC), forced expiratory volume at one second (FEV1), FVC/FEV1, and peak expiratory flow (PEF) were acquired. Results: In comparison of raw value of PFT among three time points, subjects showed generally better respiratory function at 9 am, than at other points, although no significance was found. In comparison of distribution of ranking for respiratory function in each individual, only PEF showed significant difference. In general, distributional ratio of subjects who showed best performance of respiratory function in a day was high. Conclusion: These findings showed that circadian rhythm by diurnal pattern was not detected on respiratory function throughout all day. But, best performance on respiratory function was observed mostly in the morning, although statistical significance did not exist.

Study on Process Conditions for Automatic Debarking and Xylem Separator for Paper Mulberry (닥나무 자동 흑피 및 목질부 제거 장치의 공정 조건 연구)

  • Choi, Si-Hyuk;Kwon, Oh-Hun;Kim, Hyun-Chel
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.36-44
    • /
    • 2013
  • This study is focused on the debarking and xylem separation yield of Paper Mulberry. We investigated the most efficient manual on the automatic debarking and xylem separator machine. The bast tissues of Paper Mulberry were separated in three layers including black outer layer, green inner layer, and white inner layer. A target is to save the white inner layer of these three layers as much as possible. The experimental machine most characterize xylem separation and debarking by frictional force between the bulges and Paper Mulberry by the drum rotation. It is possible automatically to operate the machine by controlling the temperature sensor and the time. Debarking process can be know that removed black outer layer has beem accumulate and measured the weight. The content of the extract, holocellulose, lignin and ashes of the white inner layer was analyzed. It is result that conditions of optimum process of the experimental machine is 45 RPM, temperature at $60^{\circ}C$(60 min.) and $80^{\circ}C$(60 min.), mixing bulge of 10 mm(120ea) and 30 mm(120ea) and capacity of Paper Mulberry 10 kg.

A Study on the Development of Overload Detecting Pad for Low Speed WIM System (저속 WIM 시스템용 과적검지 패드 개발에 관한 연구)

  • Lee, Choon-Man;Choi, Young-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.179-184
    • /
    • 2017
  • Recently, traffic accidents and damage on the highway have increased because of overloaded vehicles. The existing overload-detecting system has a low accuracy rate. An overload-detecting system using a weigh-in-motion (WIM) system has been developed to solve this problem. The WIM system can be used to detect overloaded vehicles by measuring the weight of the vehicles. The WIM system is divided into high-speed and low-speed types. The inaccuracy rate in the low-speed WIM system results mainly from the low response rate of the sensor when the velocity is moving at more than 20 km/h. In this study, a low-speed overload-detecting pad with a hydraulic structure using a WIM system was developed to make the system more accurate. The structural and formal analysis was carried out by using a finite element method (FEM) in order to analyze the structural stability and the extrusion velocity of the system. In addition, a static load test was performed to confirm the linearity and accuracy of the pad.

Development of Sensory Feedback System for Myoelectric Prosthetic Hand (전동의수 사용자를 위한 감각 측정 및 전달 시스템 개발)

  • Bae, Ju-Hwan;Jung, Sung Yoon;Kim, Shinki;Mun, Museong;Ko, Chang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2015
  • This study aimed to develop a sensory feedback system which could measure force and temperature for the user of myoelectric prosthetic hands. The Sensory measurement module consisted of a force sensing resistor to measure forces and non-contact infrared temperature sensor. These sensors were attached on the fingertips of the myoelectric prosthetic hand. The module was validated by using standard weights corresponding to external force and a Peltier module. Sensory transmission module consisted of four vibration motors. Eight vibration patterns were generated by combining motion of each vibration motor and were dependent on kinds and/or magnitude. The module was verified by using standard weigts and water at varying temperatures. There were correlations of force and temperature between the sensory measurement module and standard weight and water. Additionally, exact vibration patterns were generated, indicating the efficacy of the sensory feedback system for the myoelectric prosthetic hand.

Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for Simple Oil/Water Separation

  • Son, Seo Ju;Hong, Seong Kyung;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.89-92
    • /
    • 2020
  • Polytetrafluoroethylene (PTFE) fibers are widely used in the textile industry, filter media, membrane distillation, electronic appliances, and construction. In this study, PTFE-polyethylene oxide (PEO) fibrous membranes were fabricated by emulsion electrospinning; subsequently, pure PTFE nanofibers were obtained via sintering. PTFE-PEO electrospinning solutions were prepared using different weight ratios to determine the optimized condition. As the ratio of the PEO increased, the fiber structure improved. Scanning electron microscopy and Fourier-transform infrared spectroscopy observations indicate that PEO is removed and PTFE fused gradually to form bonds among them during sintering. The obtained pristine PTFE membrane demonstrated hydrophobicity at 143.6° water contact angle and oleophilicity at 0° oil contact angle, which is known to be utilized for oil/water separation. A simple separation experiment was performed to remove oil droplets from water. The PTFE membrane exhibited good chemical stability and a high surface-area-to-volume nanofiber ratio. These excellent properties suggest that it is applicable to oil/water separation in harsh chemical environments.