• Title/Summary/Keyword: weight control mechanisms

Search Result 141, Processing Time 0.026 seconds

Weight Control Mechanisms and Antiobesity Functional Agents (체중조절 기전과 항비만 기능성물질)

  • Ahn, In-Sook;Park, Kun-Young;Do, Myoung-Sool
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.4
    • /
    • pp.503-513
    • /
    • 2007
  • The obese population has been increasing worldwide and obesity has become one of the socioeconomic problems. Obesity raises more concerns as more studies regarding its direct and indirect relativity to several diseases such as type II diabetes, hypertension, etc. are published. Since leptin, an important signal in the chronic control of food intake and energy expenditure, was discovered in 1994, there has been a great accumulation of knowledge on fighting obesity by facilitating pharmacological and nutritional strategies on the molecular level of the body weight control system. In particular, evidences are accumulating that particular food components affect our physiological function and gene expressions which are associated with body weight control. In this study, we review the four mechanisms for weight control and antiobesity functional agents such as HCA, L-carnitine, CLA, chitosan, calcium supplements capsaicin contained in red pepper, and oriental herbal mixture. We also describe about the efficacy and working mechanism of these functional agents on the basis of antiobesity mechanisms.

Generalized Graph Representation of Tendon Driven Robot Mechanism (텐던 구동 로봇 메커니즘의 일반화된 그래프 표현)

  • Cho, Youngsu;Cheong, Joono;Kim, Doohyung
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 2014
  • Tendon driven robot mechanisms have many advantages such as allowing miniaturization and light-weight designs and/or enhancing flexibility in the design of structures. When designing or analyzing tendon driven mechanisms, it is important to determine how the tendons should be connected and whether the designed mechanism is easily controllable. Graph representation is useful to view and analyze such tendon driven mechanisms that are complicatedly interconnected between mechanical elements. In this paper, we propose a method of generalized graph representation that provides us with an intuitive analysis tool not only for tendon driven manipulators, but also various other kinds of mechanical systems which are combined with tendons. This method leads us to easily obtain structure matrix - which is the one of the most important steps in analyzing tendon driven mechanisms.

The Effect of Health Functional Food on Body Weight Reduction (건강기능식품의 체중 감량 효과)

  • Joo, Nam-Seok
    • Archives of Obesity and Metabolism
    • /
    • v.1 no.2
    • /
    • pp.59-65
    • /
    • 2022
  • Obesity is a serious health concern, which has been linked to an increased risk for cardiovascular diseases and some cancers. The traditional obesity control program is expensive. Moreover, it is difficult to maintain a healthy body weight as well as reduce body fat. The long-term use of effective and tolerable medication is carefully recommended to control body weight. In addition to obesity control medications, health functional foods, related to body weight control, have become popular in the commercial market. Known mechanisms include lipolysis, appetite control, inflammation reduction, and lean body mass maintenance. Previous clinical trials have documented the efficacy of some health functional foods; however, there are limitations. Studies on the potential roles and efficacy of some health functional foods, including caffeine, green tea, protein supplement, probiotics, and arginine, were reviewed. More large-scale and randomized placebo-controlled trials should be conducted eventually.

Dynamic Energy Balance and Obesity Prevention

  • Yoo, Sunmi
    • Journal of Obesity & Metabolic Syndrome
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2018
  • Dynamic energy balance can give clinicians important answers for why obesity is so resistant to control. When food intake is reduced for weight control, all components of energy expenditure change, including metabolic rate at rest (resting energy expenditure [REE]), metabolic rate of exercise, and adaptive thermogenesis. This means that a change in energy intake influences energy expenditure in a dynamic way. Mechanisms associated with reduction of total energy expenditure following weight loss are likely to be related to decreased body mass and enhanced metabolic efficiency. Reducing calorie intake results in a decrease in body weight, initially with a marked reduction in fat free mass and a decrease in REE, and this change is maintained for several years in a reduced state. Metabolic adaptation, which is not explained by changes in body composition, lasts for more than several years. These are powerful physiological adaptations that induce weight regain. To avoid a typically observed weight-loss and regain trajectory, realistic weight loss goals should be established and maintained for more than 1 year. Using a mathematical model can help clinicians formulate advice about diet control. It is important to emphasize steady efforts for several years to maintain reduced weight over efforts to lose weight. Because obesity is difficult to reverse, clinicians must prioritize obesity prevention. Obesity prevention strategies should have high feasibility, broad population reach, and relatively low cost, especially for young children who have the smallest energy gaps to change.

A Study on the Workspace of a Parallel Robotic Wrist (평행구조 로보트 손목기구의 작업공간에 대한 연구)

  • 양정모;백윤수;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.893-900
    • /
    • 1994
  • In this study, workspace analysis has been performed for a Clemens Coupling type parallel robotic wrist with four degrees of freedom such as three angular degrees of freedom and 1 plunge motion. Because of plunge motion, this mechanism has no singular point that the general roll-pitch-roll mechanisms have. Also, proposed mechanism performs larger load, faster motion, with less weight and has better structural characteristics such as higher stiffness and strength to weight ratio compared with serial type mechanisms. As a basic step for position control, the closed form solution of forward and inverse kinematics are proposed and workspace is analyzed and plotted by applying triangle tracer method for workspace boundary tracing.

  • PDF

Lung interstitial cells during alveolarization

  • Choi, Chang-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.12
    • /
    • pp.979-984
    • /
    • 2010
  • Recent progress in neonatal medicine has enabled survival of many extremely low-birth-weight infants. Prenatal steroids, surfactants, and non-invasive ventilation have helped reduce the incidence of the classical form of bronchopulmonary dysplasia characterized by marked fibrosis and emphysema. However, a new form of bronchopulmonary dysplasia marked by arrest of alveolarization remains a complication in the postnatal course of extremely low-birth-weight infants. To better understand this challenging complication, detailed alveolarization mechanisms should be delineated. Proper alveolarization involves the temporal and spatial coordination of a number of cells, mediators, and genes. Cross-talk between the mesenchyme and the epithelium through soluble and diffusible factors are key processes of alveolarization. Lung interstitial cells derived from the mesenchyme play a crucial role in alveolarization. Peak alveolar formation coincides with intense lung interstitial cell proliferation. Myofibroblasts are essential for secondary septation, a critical process of alveolarization, and localize to the front lines of alveologenesis. The differentiation and migration of myofibroblasts are strictly controlled by various mediators and genes. Disruption of this finely controlled mechanism leads to abnormal alveolarization. Since arrest in alveolarization is a hallmark of a new form of bronchopulmonary dysplasia, knowledge regarding the role of lung interstitial cells during alveolarization and their control mechanism will enable us to find more specific therapeutic strategies for bronchopulmonary dysplasia. In this review, the role of lung interstitial cells during alveolarization and control mechanisms of their differentiation and migration will be discussed.

Antidiabetic Activity and Mechanisms of Acarbose in $KKA^{y}$ Mice

  • Kim, Young-Lim;Chung, Sung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.183-188
    • /
    • 2001
  • To elucidate antidiabetic effect and mechanism(s) of acarbose in a polygenic spontaneous hyperglycemic and hyperinsulinemic diabetic animal model, $KKA^y$ mice, acarbose was administered orally for 4 weeks and effects on body weight, plasma glucose and insulin levels, genetic expressions of intestinal sucrase-isomaltase (SI), sodium-glucose cotransporter (sGLT1) and glucose transporter in quadriceps muscle (GLUT4) were examined in this study. Although no differences in body weight were detected between control and acarbose-treated groups, plasma glucose level in acarbose-treated group was markedly reduced as compared to the control. In the mechanism study, acarbose downregulated the SI and SGLT1 gene expressions, and upregulated the GLUT4 mRNA and protein expressions when compared to the control group. In conclusion, the data obtained strongly implicate that acarbose can prevent the hyperglycemia in $KKA^y$ mice possibly through blocking intestinal glucose absorption by downregulations of SI and sGLT1 mRNA expressions, and upregulation of skeletal muscle GLUT4 mRNA and protein expressions.

  • PDF

Effects of Dietary Arsenical Inclusion on Lipid Metabolism and Liver Function in Mule Ducks

  • Chen, Kuo-Lung;Chiou, Peter W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.412-417
    • /
    • 2006
  • This study evaluated the effectiveness of different arsenical sources on inducing fatty liver, on changes in lipid metabolism and on liver function in mule ducks. Sixty twelve-week-old mule ducks were selected and randomly divided into five treatments, including the control group and four different arsenical sources; Roxarsone (300 mg/kg), arsanilic acid, $As_2O_5$ or $As_2O_3$, containing 85.2 mg/kg arsenic were included in the basal diet. The ducks were fed the medicated basal diet for 3 weeks followed by a one-week drug withdrawal. The results showed Roxarsone treatment decreased body weight, feed intake, liver weight and abdominal fat weight (p<0.05), while it increased the relative liver weight (p<0.05) during medication period ($3^{rd}$ week). The $As_2O_5$ treatment decreased abdominal fat weight and relative abdominal fat weight when compared to the control (p<0.05). Only Roxarsone among the treatment groups increased feed intake, liver weight and relative liver weight, while the $As_2O_3$ group showed the lightest liver weight and relative liver weight among treatment groups during the withdrawal period ($4^{th}$ week). The Roxarsone group decreased (p<0.05) NADP-malic dehydrogenase (MDH) and acetyl-CoA carboxylase (ACC) activities and increased (p<0.05) cholesterol concentration during the medication period, and elevated the MDH and ACC activities during the withdrawal period. All four arsenical treatment groups showed lymphocytic infiltration in liver tissue, while the Roxarsone and $As_2O_3$ treatments showed an increase in aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities (p<0.05). During the withdrawal period, arsenical treatments resulted in liver vacuoles. However, the arsenicals differed in effectiveness and mechanisms of inducing fat vacuoles.

Design and Control of a Wearable Robot (Wearable Robot Arm의 제작 및 제어)

  • Jeong, Youn-Koo;Kim, Yoon-Kyong;Kim, Kyung-Hwan;Park, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

An Overview on Performamce Control and Efficient Design of Lateral Resisting Moment Frames

  • Grigorian, Mark;Grigorian, Carl E.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.141-152
    • /
    • 2013
  • This paper presents a brief overview of the recently developed performance-control method of moment frame design subjected to monotonously increasing lateral loading. The final product of any elastic-plastic analysis is a nonlinear loaddisplacement diagram associated with a progressive failure mechanism, which may or may not be as desirable as expected. Analytically derived failure mechanisms may include such undesirable features as soft story failure, partial failure modes, overcollapse, etc. The problem is compounded if any kind of performance control, e.g., drift optimization, material savings or integrity assessment is also involved. However, there is no reason why the process can not be reversed by first selecting a desirable collapse mechanism, then working backwards to select members that would lead to the desired outcome. This article provides an overview of the newly developed Performance control methodology of design for lateral resisting frameworks with a view towards integrity control and prevention of premature failure due to propagation of plasticity and progressive P-delta effects.