Browse > Article
http://dx.doi.org/10.3345/kjp.2010.53.12.979

Lung interstitial cells during alveolarization  

Choi, Chang-Won (Department of Pediatrics, Seoul National University College of Medicine)
Publication Information
Clinical and Experimental Pediatrics / v.53, no.12, 2010 , pp. 979-984 More about this Journal
Abstract
Recent progress in neonatal medicine has enabled survival of many extremely low-birth-weight infants. Prenatal steroids, surfactants, and non-invasive ventilation have helped reduce the incidence of the classical form of bronchopulmonary dysplasia characterized by marked fibrosis and emphysema. However, a new form of bronchopulmonary dysplasia marked by arrest of alveolarization remains a complication in the postnatal course of extremely low-birth-weight infants. To better understand this challenging complication, detailed alveolarization mechanisms should be delineated. Proper alveolarization involves the temporal and spatial coordination of a number of cells, mediators, and genes. Cross-talk between the mesenchyme and the epithelium through soluble and diffusible factors are key processes of alveolarization. Lung interstitial cells derived from the mesenchyme play a crucial role in alveolarization. Peak alveolar formation coincides with intense lung interstitial cell proliferation. Myofibroblasts are essential for secondary septation, a critical process of alveolarization, and localize to the front lines of alveologenesis. The differentiation and migration of myofibroblasts are strictly controlled by various mediators and genes. Disruption of this finely controlled mechanism leads to abnormal alveolarization. Since arrest in alveolarization is a hallmark of a new form of bronchopulmonary dysplasia, knowledge regarding the role of lung interstitial cells during alveolarization and their control mechanism will enable us to find more specific therapeutic strategies for bronchopulmonary dysplasia. In this review, the role of lung interstitial cells during alveolarization and control mechanisms of their differentiation and migration will be discussed.
Keywords
Bronchopulmonary dysplasia; Myofibroblast; Lung development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burri PH, Weibel ER. Ultrastructure and morphometry of the developing lung. In: Hodson WA, ed. Lung Biology in Health and Disease. Development of the Lung. Vol 6. New York: Marcel Dekker, 1977:215-68.
2 Rich CB, Fontanilla MR, Nugent M, Foster JA. Basic fibroblast growth factor decreases elastin gene transcription through an AP1/cAMP-response element hybrid site in the distal promoter. J Biol Chem 1999;274:33433-9.   DOI   ScienceOn
3 Boucherat O, Benachi A, Barlier-Mur AM, Franco-Montoya ML, Martinovic J, Thebaud B, et al. Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models. Am J Respir Crit Care Med 2007;175:1066-77.   DOI   ScienceOn
4 Aaronson SA, Bottaro DP, Miki T, Ron D, Finch PW, Fleming TP, et al. Keratinocyte growth factor. A fibroblast growth factor family member with unusual target cell specificity. Ann N Y Acad Sci 1991;638:62-77.   DOI
5 Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993;158:475-86.   DOI   ScienceOn
6 Padela S, Yi M, Cabacungan J, Shek S, Belcastro R, Masood A, Jankov RP, Tanswell AK. A critical role for fibroblast growth factor-7 during early alveolar formation in the neonatal rat. Pediatr Res 2008;63:232-8.   DOI   ScienceOn
7 Colvin JS, White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001;128:2095-106.
8 White AC, Lavine KJ, Ornitz DM. FGF9 and SHH regulate mesenchymal Vegfa expression and development of the pulmonary capillary network. Development 2007;134:3743-52.   DOI   ScienceOn
9 Feres-Filho EJ, Menassa GB, Trackman PC. Regulation of lysyl oxidase by basic fibroblast growth factor in osteoblastic MC3T3-E1 cells. J Biol Chem 1996;271:6411-6.   DOI
10 Weinstein M, Xu X, Ohyama K, Deng CX. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 1998;125:3615-23.
11 Chailley-Heu B, Boucherat O, Barlier-Mur AM, Bourbon JR. FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2005;288:L43-51.   DOI
12 Wagenaar GT, ter Horst SA, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA, et al. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med 2004;36:782-801.   DOI   ScienceOn
13 Benachi A, Delezoide AL, Chailley-Heu B, Preece M, Bourbon JR, Ryder T. Ultrastructural evaluation of lung maturation in a sheep model of diaphragmatic hernia and tracheal occlusion. Am J Respir Cell Mol Biol 1999;20:805-12.   DOI   ScienceOn
14 Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S, Horie T. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med 2001;163:152-7.   DOI
15 McGowan SE, Jackson SK, Olson PJ, Parekh T, Gold LI. Exogenous and endogenous transforming growth factors-beta influence elastin gene expression in cultured lung fibroblasts. Am J Respir Cell Mol Biol 1997;17:25-35.   DOI   ScienceOn
16 Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 2004;173:2099-108.   DOI
17 Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF, et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 2005;288:L683-91.   DOI
18 Albertine KH, Jones GP, Starcher BC, Bohnsack JF, Davis PL, Cho SC, et al. Chronic lung injury in preterm lambs. Disordered respiratory tract development. Am J Respir Crit Care Med 1999;159:945-58.   DOI
19 Kida K, Thurlbeck WM. The effects of beta-aminopropionitrile on the growing rat lung. Am J Pathol 1980;101:693-710.
20 Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 2005;167:927-36.   DOI   ScienceOn
21 Le Cras TD, Hardie WD, Deutsch GH, Albertine KH, Ikegami M, Whitsett JA, et al. Transient induction of TGF-alpha disrupts lung morphogenesis, causing pulmonary disease in adulthood. Am J Physiol Lung Cell Mol Physiol 2004;287:L718-29.   DOI   ScienceOn
22 Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, et al. Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice. Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol 2008;294:L3-14.   DOI
23 Brody JS, Kaplan NB. Proliferation of alveolar interstitial cells during postnatal lung growth. Evidence for two distinct populations of pulmonary fibroblasts. Am Rev Respir Dis 1983;127:763-70.
24 Awonusonu F, Srinivasan S, Strange J, Al-Jumaily W, Bruce MC. Developmental shift in the relative percentages of lung fibroblast subsets: role of apoptosis postseptation. Am J Physiol 1999;277(4 Pt 1):L848-59.
25 Torday J, Hua J, Slavin R. Metabolism and fate of neutral lipids of fetal lung fibroblast origin. Biochim Biophys Acta 1995;1254:198-206.   DOI   ScienceOn
26 Vaccaro C, Brody JS. Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat Rec 1978;192:467-79.   DOI   ScienceOn
27 Burri PH. Structural aspects of prenatal and postnatal development and growth of the lung. In: MacDonald JA, ed. Lung growth and development. New York: Marcel Dekker, 1997:1-35.
28 Watterberg KL, Demers LM, Scott SM, Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 1996;97:210-5.
29 Hilfer SR. Morphogenesis of the lung: control of embryonic and fetal branching. Annu Rev Physiol 1996;58:93-113.   DOI   ScienceOn
30 Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature 2008;453:745-50.   DOI   ScienceOn
31 Kauffman SL, Burri PH, Weibel ER. The postnatal growth of the rat lung. II. Autoradiography. Anat Rec 1974;180:63-76.   DOI   ScienceOn
32 Weibel ER. Functional morphology of lung parenchyma. In: Macklem PT, Mead J, eds. Handbook of Physiology. Section 3: The respiratory system. Vol III. Part 1. Bethesda: American Physiological Society, 1986:89-111.
33 Weibel ER. Bachofen H. The fiber scaffold of lung parenchyma. In: Crystal RG, West JB, eds. The Lung: Scientific Foundations. Vol 1. New York: Raven Press, 1991:787-94.
34 Starcher BC. Elastic and the lung. Thorax 1986;41:577-85.   DOI   ScienceOn
35 McGowan SE, Torday JS. The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu Rev Physiol 1997;59:43-62.   DOI   ScienceOn
36 Chetty A, Faber S, Nielsen HC. Epithelial-mesenchymal interaction and insulin-like growth factors in hyperoxic lung injury. Exp Lung Res 1999;25:701-18.   DOI   ScienceOn
37 Foster JJ, Goss KL, George CL, Bangsund PJ, Snyder JM. Galectin-1 in secondary alveolar septae of neonatal mouse lung. Am J Physiol Lung Cell Mol Physiol 2006;291:L1142-9.   DOI   ScienceOn
38 Boucherat O, Franco-Montoya ML, Thibault C, Incitti R, Chailley-Heu B, Delacourt C, et al. Gene expression profiling in lung fibroblasts reveals new players in alveolarization. Physiol Genomics 2007;32:128-41.   DOI   ScienceOn
39 Lindahl P, Karlsson Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 1997;124:3943-53.
40 Liu H, Chang L, Rong Z, Zhu H, Zhang Q, Chen H, Li W. Association of insulin-like growth factors with lung development in neonatal rats. J Huazhong Univ Sci Technolog Med Sci 2004;24:162-5.   DOI   ScienceOn
41 Chetty A, Cao GJ, Nielsen HC. Insulin-like Growth Factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr Res 2006;60:389-94.   DOI   ScienceOn
42 Warburton D, Bellusci S. The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev 2004;5 Suppl A:S283-7.   DOI   ScienceOn
43 Powell PP, Wang CC, Horinouchi H, Shepherd K, Jacobson M, Lipson M, et al. Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung. Am J Respir Cell Mol Biol 1998;19:563-72.   DOI   ScienceOn
44 Vicencio AG, Eickelberg O, Stankewich MC, Kashgarian M, Haddad GG. Regulation of TGF-beta ligand and receptor expression in neonatal rat lungs exposed to chronic hypoxia. J Appl Physiol 2002;93:1123-30.   DOI
45 Alejandre-Alcazar MA, Shalamanov PD, Amarie OV, Sevilla-Perez J, Seeger W, Eickelberg O, Morty RE. Temporal and spatial regulation of bone morphogenetic protein signaling in late lung development. Dev Dyn 2007;236:2825-35.   DOI   ScienceOn
46 Sime PJ, O'Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol 2001;99:308-19.   DOI   ScienceOn
47 Bartram U, Speer CP. The role of transforming growth factor beta in lung development and disease. Chest 2004;125:754-65.   DOI   ScienceOn
48 Rehan V, Torday J. Hyperoxia augments pulmonary lipofibroblast-to-myofibroblast transdifferentiation. Cell Biochem Biophys 2003;38:239-50.   DOI   ScienceOn
49 Maksvytis HJ, Niles RM, Simanovsky L, Minassian IA, Richardson LL, Hamosh M, et al. In vitro characteristics of the lipid-filled interstitial cell associated with postnatal lung growth: evidence for fibroblast heterogeneity. J Cell Physiol 1984;118:113-23.   DOI
50 McGowan SE, Jackson SK, Doro MM, Olson PJ. Peroxisome proliferators alter lipid acquisition and elastin gene expression in neonatal rat lung fibroblasts. Am J Physiol 1997;273:L1249-57.
51 Nakamura Y, Fukuda S, Hashimoto T. Pulmonary elastic fibers in normal human development and in pathological conditions. Pediatr Pathol 1990;10:689-706.   DOI
52 Noguchi A, Firsching K, Kursar JD, Reddy R. Developmental changes of tropoelastin synthesis by rat pulmonary fibroblasts and effects of dexamethasone. Pediatr Res 1990;28:379-82.   DOI   ScienceOn
53 Bruce MC, Honaker CE. Transcriptional regulation of tropoelastin expression in rat lung fibroblasts: changes with age and hyperoxia. Am J Physiol 1998;274:L940-50.   DOI
54 Kim N, Vu TH. Parabronchial smooth muscle cells and alveolar myofibroblasts in lung development. Birth Defects Res C Embryo Today 2006;78:80-9   DOI   ScienceOn
55 Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999;277:C1-9.   DOI
56 Dickie R, Wang YT, Butler JP, Schulz H, Tsuda A. Distribution and quantity of contractile tissue in postnatal development of rat alveolar interstitium. Anat Rec (Hoboken) 2008;291:83-93.   DOI   ScienceOn
57 Noguchi A, Reddy R, Kursar JD, Parks WC, Mecham RP. Smooth muscle isoactin and elastin in fetal bovine lung. Exp Lung Res 1989;15:537-52.   DOI   ScienceOn
58 Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, et al. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2007;292:L537-49.   DOI
59 Bland RD. Neonatal chronic lung disease in the post-surfactant era. Biol Neonate 2005;88:181-91.   DOI   ScienceOn
60 Yamada M, Kurihara H, Kinoshita K, Sakai T. Temporal expression of alpha-smooth muscle actin and drebrin in septal interstitial cells during alveolar maturation. J Histochem Cytochem 2005;53:735-44.   DOI   ScienceOn
61 Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163:1723-29.   DOI   ScienceOn
62 Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med 2007;357:1946-55.   DOI   ScienceOn
63 Prodhan P, Kinane TB. Developmental paradigms in terminal lung development. Bioessays 2002;24:1052-9.   DOI   ScienceOn
64 Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 1996;85:863-73.   DOI   ScienceOn
65 Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 2007;30:1819-25.   DOI   ScienceOn
66 Wang Z, Shu W, Lu MM, Morrisey EE. Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol Cell Biol 2005;25:5022-30.   DOI   ScienceOn