• Title/Summary/Keyword: weighing accuracy

Search Result 31, Processing Time 0.032 seconds

Development of a smart rain gauge system for continuous and accurate observations of light and heavy rainfall

  • Han, Byungjoo;Oh, Yeontaek;Nguyen, Hoang Hai;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.334-334
    • /
    • 2022
  • Improvement of old-fashioned rain gauge systems for automatic, timely, continuous, and accurate precipitation observation is highly essential for weather/climate prediction and natural hazards early warning, since the occurrence frequency and intensity of heavy and extreme precipitation events (especially floods) are recently getting more increase and severe worldwide due to climate change. Although rain gauge accuracy of 0.1 mm is recommended by the World Meteorological Organization (WMO), the traditional rain gauges in both weighting and tipping bucket types are often unable to meet that demand due to several existing technical limitations together with higher production and maintenance costs. Therefore, we aim to introduce a newly developed and cost-effective hybrid rain gauge system at 0.1 mm accuracy that combines advantages of weighting and tipping bucket types for continuous, automatic, and accurate precipitation observation, where the errors from long-term load cells and external environmental sources (e.g., winds) can be removed via an automatic drainage system and artificial intelligence-based data quality control procedure. Our rain gauge system consists of an instrument unit for measuring precipitation, a communication unit for transmitting and receiving measured precipitation signals, and a database unit for storing, processing, and analyzing precipitation data. This newly developed rain gauge was designed according to the weather instrument criteria, where precipitation amounts filled into the tipping bucket are measured considering the receiver's diameter, the maximum measurement of precipitation, drainage time, and the conductivity marking. Moreover, it is also designed to transmit the measured precipitation data stored in the PCB through RS232, RS485, and TCP/IP, together with connecting to the data logger to enable data collection and analysis based on user needs. Preliminary results from a comparison with an existing 1.0-mm tipping bucket rain gauge indicated that our developed rain gauge has an excellent performance in continuous precipitation observation with higher measurement accuracy, more correct precipitation days observed (120 days), and a lower error of roughly 27 mm occurred during the measurement period.

  • PDF

Factors influencing on the discharge coefficients of sonic nozzle (소닉노즐의 유출계수에 영향을 미치는 인자에 관한 연구)

  • Yu, Seong-Yeon;Lee, Sang-Yun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4027-4035
    • /
    • 1996
  • Accuracy of gas flow measurements using sonic nozzle and factors which influence on the discharge coefficients of sonic nozzle are investigated with high pressure gas flow standard measurement system. The gas flow measurement system comprises two compressors, storage tank, temperature control loop, sonic nozzle test section, weighing tank, gyroscopic scale and data acquisition system. The experiments are performed at various nozzle throat diameter and inlet pressure. Overall uncertainty of discharge coefficients is estimated to less than .+-.0.2% and most of experimental data fall into this range. Dependence of discharge coefficients on the Reynolds number is good agreement with those suggested in ISO document. The influence of swirl on the discharge coefficients becomes greater as the nozzle throat diameter is enlarged. The discharge coefficient of conical nozzle shows about 4.5% lower discharge coefficients than those of toroidal nozzle, but variation trend with Reynolds number is very similar each other and reproducibility of data is very good.

Bias and Accuracy of Single Milking Testing Schemes to Estimate Daily Milk (검정일 1회 검정에 의한 착유우의 1일 유량 추정시 오차와 정확도)

  • Cho, Y.M.;Ahn, B.S.;Choi, Y.L.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.725-730
    • /
    • 2003
  • This study was conducted to evaluate the adequacy of an alternative a.m.-p.m. testing scheme for milk yield in comparison with the official test method based on weighing two milkings within 24 h. A total of 8,309 p.m. milking weights and 6,767 a.m. milking weights from 72 Holstein cows raised at N.L.R.I. were collected between October 2000 and November 2001. Ratios were computes for daily milk yield to a.m. and p.m. milking weights(direct yield ratios) and ratios of a.m. and p.m. milking weights to daily milk yield (inverse yield ratios). Analysis of variance indicated that the milking interval is the most important source of variation for yield ratios. Adjustment factors for estimating daily milk yield from single milking weights were derived through regression analysis of direct and inverse yield ratios on the length of the milking interval. Daily milk yield was estimated more precisely and accurately when adjustment factors were used than when single milking weights were doubled. In conclusion, alternative recording of a.m. and p.m. milking weights led to reliable estimates of milk yields.

Studies on Density Measurement of Green Fe/Ni P/M Sheet Using ${\gamma}-ray$ (감마선을 이용한 소결 전 Fe/Ni 분말야금 판재의 밀도측정에 관한 연구)

  • Cho, K.S.;Lee, J.O.;Lee, S.Y.;Lee, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.3
    • /
    • pp.7-11
    • /
    • 1992
  • Accurate measurement of green density of compacted part in the powder metallurgy industry is rather fundamental but extremely important process that decide the quality of the sintered part. In case of green sheet P/M product, the green density as well as the distribution of the density must be examined for the same reasons. Currently in most cases, density measuring process is being performed applying conventional Archimedes principles. However this method is not only time-consuming but also often inaccurate because of the inherent nature of the process, such as part sectioning, closing of surface porosity with wax and weighing in air and in water. Therefore, it is necessary to develop a faster and more accurate method to measure the density of green sheet P/M product. In this work, a nondestructive density measurement device using gamma-ray absorption principles was constructed and the optimum condition for measuring green density of P/M sheet and its distribution was sought. The results showed that this method was very effective in terms of measuring time and accuracy.

  • PDF

SPOT Robot Hardware and Software Performance Analysis for Autonomous and Unmanned Construction Site Management System (건설 현장 관리 자율 및 무인화 시스템을 위한 SPOT 로봇 하드웨어 및 소프트웨어 성능 분석)

  • Park, Bong-Jin;Kim, Do-Keun;Jang, Se-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.221-222
    • /
    • 2023
  • The purpose of this study is to analyze the applicability and limitations of SPOT robots in the construction industry. The SPOT robot, which is being introduced to construction sites for smart construction with the progress of the 4th industrial revolution, is shaped like a four-legged dog and is equipped with various sensors for data collection and autonomous driving. In this study, hardware and software were analyzed, such as the size of the SPOT robot, mobility on slopes and heights, operating environment, and software functions that can collect data with a sensor weighing up to 14 kg. In addition, while the SPOT robot operates in a construction environment, performance such as stability, accuracy, signal connection distance, and obstacle avoidance are evaluated, and the applicability and limitations of the SPOT robot in the construction industry are analyzed. Based on this analysis, the purpose of this study is to evaluate when and how SPOT robots can be effectively used at construction sites, identify limitations, and derive contributions and improvements for the construction industry.

  • PDF

Study on the measurement of the cylinder lengths of an underwater robot for harbour construction using a pressure sensor (압력센서를 이용한 수중항만공사 로봇의 실린더 길이 측정에 관한 연구)

  • Kim, Chi-Hyo;Kim, Tae-Sung;Lee, Min-Ki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.9-10
    • /
    • 2012
  • This paper presents an observer to measure the lengths of cylinders of an underwater robot for harbour construction using a pressure sensor. In harbour constructing, we place heavy armour stones weighing over 2~3 tons on the surface of the bank to protect it from storming wave. This work typically done by a diver is difficult and dangerous so that we have developed Stone Diver which is the underwater robot for harbour construction. The robot needs a position sensor to control the hydraulic cylinder. The position sensors mounted outside the cylinders cause poor durability in construction site where shock and dust usually occur. However, the pressure sensor mounted inside a waterproof box improves the durability. Based on the dynamic parameters and the pressures in the cylinder, the observer measures the cylinder's position. This paper presents the positional accuracy of the pressure based observer and the performance of the underwater robot to assemble the armour stones.

  • PDF

Study on the estimation of the cylinder displacement of an underwater robot for harbor construction using a pressure sensor (압력센서를 이용한 수중항만공사 로봇의 실린더 변위 추정에 관한 연구)

  • Kim, Chi-Hyo;Kim, Tae-Sung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.865-871
    • /
    • 2012
  • This paper presents an observer to estimate the displacement of hydraulic cylinders of an underwater robot for harbour construction using a pressure sensor. In harbour constructing, we place heavy armour stones weighing over 2~3 tons on the surface of the bank to protect it from storming wave. This work typically done by a diver is difficult and dangerous so that we have developed Stone Diver which is the underwater robot for harbour construction. The robot needs a displacement sensors to control the position of hydraulic cylinders. The position sensors mounted outside the cylinders cause poor durability in construction site where shock and dust usually occur. However, the pressure sensor mounted inside a waterproof box improves the durability. Based on the dynamic parameters and the pressures in the cylinder, the observer estimates the cylinder's position. This paper presents the positional accuracy of the pressure based observer and the performance of the underwater robot to assemble the armour stones.

Resource-Efficient Object Detector for Low-Power Devices (저전력 장치를 위한 자원 효율적 객체 검출기)

  • Akshay Kumar Sharma;Kyung Ki Kim
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2024
  • This paper presents a novel lightweight object detection model tailored for low-powered edge devices, addressing the limitations of traditional resource-intensive computer vision models. Our proposed detector, inspired by the Single Shot Detector (SSD), employs a compact yet robust network design. Crucially, it integrates an 'enhancer block' that significantly boosts its efficiency in detecting smaller objects. The model comprises two primary components: the Light_Block for efficient feature extraction using Depth-wise and Pointwise Convolution layers, and the Enhancer_Block for enhanced detection of tiny objects. Trained from scratch on the Udacity Annotated Dataset with image dimensions of 300x480, our model eschews the need for pre-trained classification weights. Weighing only 5.5MB with approximately 0.43M parameters, our detector achieved a mean average precision (mAP) of 27.7% and processed at 140 FPS, outperforming conventional models in both precision and efficiency. This research underscores the potential of lightweight designs in advancing object detection for edge devices without compromising accuracy.

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

The Effect of Non-genetic Factors on Birth Weight and Weaning Weight in Three Sheep Breeds of Zimbabwe

  • Assan, N.;Makuza, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • Sheep production is affected by genetic and non-genetic factors. A knowledge of these factors is essential for efficient management and for the accurate estimation of breeding values. The objective of this study was to establish the non-genetic factors which affect birth weight and weaning weight in Dorper, Mutton Merino and indigenous Sabi sheep breeds. A total of 2,625 birth and weaning weight records from Grasslands Research Station collected from 1991 through 1993, were used. The records were collected from indigenous Sabi (939), Dorper (807) and Mutton Merino (898) sheep. A mixed classification model containing the fixed effects of year, birth status and sex was used for identification of non-genetic factors. Sire within breed was included as a random effect. Two factor interactions and three factor interactions were important in indigenous Sabi, Mutton Merino and Dorper sheep. The mean birth weights were 4.37${\pm}$0.04 kg, 4.62${\pm}$0.04 kg and 3.29${\pm}$0.04 kg for Mutton Merino, Dorper and Sabi sheep, respectively. Sire had significant effects (p<0.05) on birth weight in Mutton Merino and indigenous Sabi sheep. Year of lambing had significant effects (p<0.05) on birth weight in indigenous Sabi, Mutton Merino and Dorper sheep. The effect of birth status was non significant in Dorper and Mutton Merino sheep while effect of birth status was significant on birth weight in indigenous Sabi sheep. In Indigenous Sabi sheep lambs born as singles (3.30${\pm}$0.05 kg) were 0.23 kg heavier than twins (3.07${\pm}$0.05 kg), in Mutton Merino lambs born as singles (3.99${\pm}$0.08 kg) were 0.07 kg heavier than twins (3.92${\pm}$0.08 kg) and in Dorper lambs born as singles (4.41${\pm}$0.04 kg) were 0.02 kg heavier than twins (4.39${\pm}$0.04 kg). On average males were heavier than females (p<0.05) weighing (3.32${\pm}$0.04 kg vs. 3.05${\pm}$0.07 kg) in indigenous Sabi, 4.73${\pm}$0.03 kg vs. 4.08${\pm}$0.05 in Dorper and 4.26${\pm}$0.07 kg vs. 3.66${\pm}$0.09 kg in Mutton Merino sheep. Two way factor interactions of sire*year, year*sex and sex*birth status had significant effects (p<0.05) on birth weight in indigenous Sabi, Mutton Merino and Dorper sheep while the effect of year*birth status was non significant on birth weight in Indigenous Sabi sheep. The three way factor interaction of year*sex*birth status had a significant effect (p<0.01) on birth weight in indigenous Sabi and Mutton Merino. Tupping weight fitted as a covariate had significant effects (p<0.001) on birth weight in indigenous Sabi, Mutton Merino and Dorper sheep. The mean weaning weights were 17.94${\pm}$0.31 kg, 18.19${\pm}$0.28 kg and 14.39${\pm}$0.28 kg for Mutton Merino, Dorper and Indigenous Sabi sheep, respectively. Effects of sire and sire*year were non significant on weaning weight in Dorper and Mutton Merino while year, sex and sex*year interaction had significant effects (p<0.001) on weaning weight. On average males were heavier than females (p<0.001) at weaning. The respective weaning weights were 18.05${\pm}$0.46 kg, 18.68${\pm}$0.19 kg, 14.14${\pm}$0.15 kg for males and 16.64${\pm}$0.60 kg, 16.41${\pm}$0.31 kg, 12.64${\pm}$0.32 kg for females in Mutton Merino, Dorper and Indigenous Sabi sheep. Lambs born as singles were significantly heavier at weaning than twins, 0.05 kg, 0.06 kg and 0.78 kg for Mutton Merino, Dorper and Indigenous Sabi sheep, respectively. Effect of tupping weight was highly significant on weaning weight. The three way factor interaction year*sex*birth status had a significant effect (p<0.01) on weaning weight. Correction for environmental effects is necessary to increase accuracy of direct selection for birth weight and weaning weight.