• Title/Summary/Keyword: weed control effect

Search Result 270, Processing Time 0.032 seconds

Bud sprouting and Tuberization of Eleocharis kuroguwai Ohwi (올방개(Eleocharis kuroguwai Ohwi)의 맹아(萌芽) 및 괴경형성(塊莖形成)에 관(關)한 연구(硏究))

  • Kim, Kil-Ung;Kwon, Soon-Tae
    • Korean Journal of Weed Science
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 1985
  • This study was conducted to investigate the existance of dormancy in newly collected tubers of Eleocharis kuroguwai Ohwi from paddy fields and to determine the effect of various growth regulators on the bud sprouting and tuberization of E. kuroguwai. The maximum percent sprouting of E. kuroguwai collected at every month during winter was less than 60% regardless of varied collection tunes until 50 days after incubation, suggesting the presence of dormancy in E. kuroguwai tubers. This dormancy was markedly broken as the time went by, probably due to the exposure of tubers the extremly low temperature. The treatment of $BA10^{-3}M$ and $BA10^{-3}+GA10^{-6}M$ increased bud sprouting about 10 and 11 times, respectively, than that of the untreated control indicating that BA seems to be one of the most effective agents among the growth regulators used on the bud sprouting of E. kuroguwai. Foliar application of BA increased tuberization of E. kuroguwai by an average of 34.4% as compared with the untreated control. The highest increase, 39.8% was obtained with BA treatment at $10^{-5}M$.

  • PDF

Mulching Materials as Yield Booster for Sustainable Mungbean Production

  • Kim Hee-Jung;Lee Ho-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2005
  • The effect of different mulching materials on mungbean production was studied. The general objective was to assess the ecological effects of mulching materials in sustainable mungbean production. Specifically, the study aimed to determine the effects of different mulching materials on the chemical, physical and biological soil properties, on weed control and yield, and to identify mulching materials that are environmentally friendly in mungbean production. The experiment was conducted at the Fruit and Vegetables Seeds Center, Science City of $Mu/tilde{n}oz$, Nueva Ecija, Philippines from May to July 2004. The initial soil chemical properties were: pH of 6.4, 2.0 percent organic matter content, 0.10 percent total nitrogen, 22 ppm phosphorus, and 370 ppm available potassium. The soil microbial loads were $8\times10^4\;CFU\;g^{-1}$ for bacteria and $14\times10^4\;CFU\;g^{-1}$ for fungi. Mushroom spent mulch increased soil organic matter with an average of 3.13 percent, nitrogen with an average of 0.16 percent and the highest number of bacterial count with $3.4\times10^8\;CFU\;g^{-1}$. Use of mulch, except rice straw mulch, generally increased mungbean yield. The best mulching material for high yield production of mungbean was black polyethylene plastic film, although environmentally unfriendly.

Allelopathic and Autotoxic Effects of Alfalfa Plant and Soil Extracts

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • Alfalfa (Medicago sativa L.) plants have been reported to be autotoxic as well as allelopathic. Laboratory and greenhouse experiments through petri-dish and pot test were conducted to determine autotoxic effects of alfalfa leaf and soil extracts on the germination or early seedling growth of alfalfa, and to evaluate allelopathic effects of alfalfa leaf residues on alfalfa, barnyard grass, com, eclipta and soybean. Alfalfa seed germination was delayed depending on aqueous extract concentration, with no difference in final germination after 48 hours. Alfalfa root length was more sensitive to the autotoxic chemicals from leaf extracts than was germination or shoot length. Root growth of alfalfa was significantly inhibited at extract concentration of more than 1 g dry tissue/L (g $\textrm{L}^{-1}$). Hypocotyl growth, however, was not affected by all the concentrations of leaf extracts. Soil extracts from 4-yr-old alfalfa stand significantly reduced alfalfa root length by 66%, while soil extracts from 0,1, and 3yr-old stand stimulated root length up to 14-32% over the control. Residue incorporation with dry matters of alfalfa leaf at 100 g $\textrm{kg}^{-1}$ reduced seedling length of several crop and weed species, ranging from 53 to 87% inhibition. Addition of nutrient solution into alfalfa leaf extracts alleviated alfalfa autotoxic effect. This result indicates alfalfa leaf and soil extracts or residues could exert autotoxic as well as allelopathic substances into soil environments during and after establishment.

Physiological Characteristics of Actinomycetes Isolated from Turfgrass Rhizosphere (잔디 근권에서 분리된 Actinomycetes균주의 생리학적 특성)

  • Lee, Jung Han;Min, Gyu Young;Shim, Gyu Yul;Jeon, Chang Wook;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.348-359
    • /
    • 2015
  • Total 443 isolates of actinomycetes were isolated from turfgrass rhizosphere as potential biological control agents. The two isolates (S11 and S4) showed highest cellulase activity with compared to the other isolates that exhibited a clear zone of 1.2 mm around the colony on cellulose agar medium. S12 strain appeared the most active chitin degrading, which exhibited a 1.2 mm of clear zone. The highest proteolytic activity on skim milk agar was which exhibited a 7.5 mm of clear zone by S2 strain. S1 strain from the soli showed siderophore production ability, which exhibited a 0.6 mm of large clear zone on chrome azurol S agar. The antifungal activity of the volatile compound producing by 4 selected actinomycetes was investigated that inhibition rate against Rhizoctonia solani AG2-2 and Sclerotinia homoeocarpa. Growth inhibition effect of S8 isolate against S. homoeocarpa was appeared to 94.8%, S2 to 76.9%, S5 to 46.1% and S12 to 43.5%. The significant inhibition effects on mycelial growth of S. homoeocarpa were shown on media with four strains. The inhibition effect was the highest with S8 strain treatment at 94.8%.

Tolerance: An Ideal Co-Survival Crop Breeding System of Pest and Host in Nature with Reference to Maize

  • Kim, Soon-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.59-70
    • /
    • 2000
  • In nature, plant diseases, insects and parasites (hereafter called as "pest") must be co-survived. The most common expression of co-survival of a host crop to the pest can be tolerance. With tolerance, chemical uses can be minimized and it protects environment and sustains host productivity and the minimum pest survival. Tolerance can be applicable in all living organisms including crop plants, lifestocks and even human beings. Tolerant system controls pest about 90 to 95% (this pest control system often be called as horizontal or partial resistance), while the use of chemicals or selection of high resistance controls pest 100% (the most expression of this control system is vertical resistance or true resistance). Controlling or eliminating the pests by either chemicals or vertical resistance create new problems in nature and destroy the co-survial balance of pest and host. Controlling pests through tolerance can only permit co-survive of pests and hosts. Tolerance is durable and environmentally-friend. Crop cultivars based on tolerance system are different from those developed by genetically modified organism (GMO) system. The former stabilizes genetic balance of a pest and a host crop in nature while the latter destabilizes the genetic balance due to 100% control. For three decades, the author has implemented the tolerance system in breeding maize cultivars against various pests in both tropical and temperate environments. Parasitic weed Striga species known as the greatest biological problem in agriculture has even been controlled through this system. The final effect of the tolerance can be an integrated genetic pest management (IGPM) without any chemical uses and it makes co-survival of pests in nature.in nature.

  • PDF

Comparison of Carbon Sequestration Potential of Winter Cover Crop Cultivation in Rice Paddy Soil

  • Lee, Seul-Bi;Haque, Mozammel;Pramanik, Prabhat;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.234-242
    • /
    • 2011
  • BACKGROUND: Cultivation of winter cover crops is strongly recommended to increase land utilization efficiency, animal feeding material self-production, and to improve soil and environmental quality. METHODS AND RESULTS: Four major winter crops (barley, Chinese milk vetch, hairy vetch, and rye) having different C/N ratio were seeded in silt loam paddy soil in the November 2007 and the aboveground biomass was harvested on the late May 2008 to evaluate its effectiveness as green manure, and root biomass distribution was characterized at the different depth (0-60 cm) to study its effect on physical properties and carbon sequestration in soil. During this experiment, the naturally growing weed in the rice paddy soil in Korea, short awn foxtail (Alopecurus aequalis Sobol), was considered as control treatment. Above-ground biomass of all cover crops selected was significantly higher than that of the control treatment (2.8 Mg/ha). Comparatively higher above-ground biomass productivity of rye and barley (15.8 and 13.5 Mg/ha, respectively) suggested that these cover crops possibly had the highest potential as a green manure and animal feeding material. Root biomass production of different cover crops followed the same trend as that for their above ground biomass. Rye (Secale cereal) might have the highest potential for soil C accumulation (7893 C kg/ha) by root biomass development, and then followed by barley (6985 C kg/ha), hairy vetch (6467 C kg/ha), Chinese milk vetch (6671 C kg/ha), and control (5791 C kg/ha). CONCLUSION(s): Cover crops like rye and barley having high biomass productivity might be the most effective winter cover crops to increase organic carbon distribution in different soil aggregates which might be beneficial to improve soil structure, aeration etc. and C sequestration.

Effect of Different PE Mulching Duration on the Competition Ability of Sesame Growing in Association with Various Weed Communities (비닐피복기간(被覆期間)이 잡초군락형성(雜草群落形成)에 참깨의 경합력(競合力)에 미치는 영향(影響))

  • Lee, J.I.;Kang, C.W.;Kwon, Y.W.
    • Korean Journal of Weed Science
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 1986
  • This experiment was conducted to determine the influence of weed competition in sesame and the periods for weed control. Competition periods (days), for which sesame was seeded under transparent polyethylene film at May 15, were 10, 15, 30, 45, 60, 75, 90, and full growth season of sesame. Weed control periods (days), for which sesame was seeded under black polyethylene film at June 15, were 10, 15, 30, 45, 60, and full growth season of sesame. Dominant weeds were Ponulaca oleracea, Digitaria sanguinalis, Acalypha australis, L. Cyperus arnuricus, Arenaria aesrphllifolia, Cardamine flexucosa, Mollugo Stricta and Digitaria eschaemum. The number of weeds was maximum at the 30 days after planting. Broad leaf weeds were dominant than grass weeds, and then decreased the total number of weeds by the reason of major decrease of broad leaf weeds. However, the weight of weeds increased continuously. No weeds appeared until the 15 days after planting and the weight of broad leaf weeds was heavier than that of grass weeds until 45 days after planting. However, grass weeds were heavier than broad leaf weeds after 60 days after planting. The hazards of weeds on the growth and development appeared seriously from the 60 to 75 days after planting, but main yield reduction appeared from 30 days after planting. Therefore once more hand weeding should be practiced within 30 days after planting to minimize yield decrease. Serious hazards by weed growing appeared by removing black PE film after 15 to 30 days after planting in growth characteristics and 30 days later in grain yield. Leaf growth showed maximum from 45 to 60 days after planting and then decreased as compared with the continuous increase of stem and root in optimum planting, transparent PE film mulch and hand weeding. Leaf growth didn't show reducing in PE film mulch and weedy check but total weight of weeds increased and growth of sesame decreased as compared to PE film mulch and hand weeding. Leaf, stem and root growth of sesame, and weed weight under black PE film mulch showed same tendancy and lower growth of sesame as compared with optimum planting, transparent PE film mulch. Correlation between sesame yield and weeds weight were r =$ -0.874^{**}$ in the optimum planting and r = $-0.712^{**}$ in the late planting, so that the more weeds increase, the lesser sesame yield.

  • PDF

Weeding Effect and Phytotoxicity Variable in Herbicide Treatment in Mechanically Transplanted Paddy Field - 1. Effect of Application Time on Weeding Effect and Phytotoxicity (기계이앙답에(機械移秧畓) 있어서 제초제(除草劑)의 약효(藥效) 및 약해(藥害) 변동요인(變動要因) - 제(第) 1 보(報) 처리시기(處理時期)의 차이(差異)가 약효(藥效) 및 약해(藥害)에 미치는 영향(影響))

  • Ryang, Hwan-Seung;Han, Seong-Soo;Kim, J.S.
    • Korean Journal of Weed Science
    • /
    • v.1 no.1
    • /
    • pp.69-77
    • /
    • 1981
  • Six herbicides were evaluated to investigate the phytotoxicity of rice plant and the weeding efficacy influenced by the time of application in mechically transplanted paddy field. The amount of each chemical applied was 3 kg, a. i, /ha. Chlormethoxynil : Rotala indica KOEHNE and Lindernia pyxuiaria PHILCOX were effectively controlled when applied on the 12th day after transplanting (12 DAT) and this herbicide was excellent for the control of Echinochloa crusgalli P. BEAUV, Monochoria vaginalis PRESL and Sagittaria pygmaea MIQ, when applied early (7 days after puddling) but its weeding effect for these weeds decreased greatly as the application time became later. It had a controlling effect for Potamogeton distinctus A. BENN, Cyperus serotinus ROTTB and Scirpus hotarui ROXB at the initial period at the earlier application time. Butachlor was effective in controlling E. crusgalli, R. indica and L. pyxidaria at 12 days after transplanting (DAT) but was not effective in controlling P. distinctus and S. pygmaea even at the early application time. M. vaginalis, C. serotinus and S. hotarui were effectively controlled by the butachlor treatment at 7 days after final puddling (2 DBT-SDAT) but this weeding effect decreased at the late application time. A combination of butachlor and naproanilide excellently controlled E. crusgalli, R. indica, L. pyxidaria and S. pygmaea regardless of the application time. For the control of M. vaginalis, C. serotinus and P. distinctus, the weeding effect of this mixtures was much greater than that of the single treatment of butachlor. Perfluidone was excellent for the control of E. crusgalli, R. indica, L. pyxidaria, M. vaginalis and S. pygmaea at either application time tested. P. distinctus, C. serorinus and S. hotarui could be controlled by this chemicals until the time of first observation (23 DAT) but the effect for these weeds somewhat decreased as time passed. The effect of pyrazolate on E. crusgalli, M. vaginalis, S. hotarui and P. distinctus was very excellent regardless of the application time but R. indica and L. pyxidaria could not be completely eliminated by this chemical. This chemical was effective in controlling C. serotinus when applied at 7-9 days after final puddling and showed a controlling effect for S. hotaruionly at the initial period. Piperophos + dimethametryn was very excellent for the control of all the annual weeds and P. distinctus. It showed a controlling effect on S. pygmaea, C. serotinus and S. hotarui only at the initial period. There was no difference in the effects on phytotoxicity and yield between chlormethoxynil and pyrazolate at either times of application tested. The later the application time was, the less the phytotoxicity of butachlor and piperophos+dimethametryne was. The phytotoxicity of butachlor + naproanilide and perfluidone decrease in the plots treated at the later application time. When the last two chemicals were treated at 2 days before transplanting (DBT) the yield decreased as compared with the hand weeded plot.

  • PDF

Change of Efficacy and Phytotoxicity of Paddy Herbicide under Temperature Rise (온도상승에 따른 논 제초제의 약효 및 약해 변동)

  • Park, Tae-Sun;Hwang, Jae-Bok;Bae, Hee-Soo;Park, Hong-Kyu;Lee, Gun-Hwi
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.203-211
    • /
    • 2017
  • This study was conducted to investigate the phytotoxicity of main rice varieties and control efficacy of HPPD inhibitor to major paddy weeds at the time of temperature rise due to climate change. Phytotoxicity of herbicide to rice was increased as temperature was increased, and more severe in root than shoot. The phytotoxicity of japonica rice cultivars for the rice were mild enough to recover. However, glutinous rice, super high yield rice, and Tongil rice varieties were damaged enough to decrease the yield. Shindongjinbyeo transplanted by June 15, showed phytotoxicity enough to recover. However, in the rice field on June 30 and on July 15, the rice showed a remarkable inhibition. The control effect of Monochoria vaginalis and Scirpus juncoides was more than 90% under the temperature condition controlled artificially. However, Echinochloa oryzicola was controlled 40% at $27.5^{\circ}C$, which is a high temperature condition. In rice fields with different transplanting times, annual weeds except for E. oryzicola were highly controlled by 90% or more regardless of the time of transplanting.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.