Browse > Article
http://dx.doi.org/10.5660/WTS.2015.4.4.348

Physiological Characteristics of Actinomycetes Isolated from Turfgrass Rhizosphere  

Lee, Jung Han (Korea Turfgrass Research Institute)
Min, Gyu Young (Daejung Golf Engineering Co. Ltd.)
Shim, Gyu Yul (Korea Turfgrass Research Institute)
Jeon, Chang Wook (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
Kwak, Youn-Sig (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
Weed & Turfgrass Science / v.4, no.4, 2015 , pp. 348-359 More about this Journal
Abstract
Total 443 isolates of actinomycetes were isolated from turfgrass rhizosphere as potential biological control agents. The two isolates (S11 and S4) showed highest cellulase activity with compared to the other isolates that exhibited a clear zone of 1.2 mm around the colony on cellulose agar medium. S12 strain appeared the most active chitin degrading, which exhibited a 1.2 mm of clear zone. The highest proteolytic activity on skim milk agar was which exhibited a 7.5 mm of clear zone by S2 strain. S1 strain from the soli showed siderophore production ability, which exhibited a 0.6 mm of large clear zone on chrome azurol S agar. The antifungal activity of the volatile compound producing by 4 selected actinomycetes was investigated that inhibition rate against Rhizoctonia solani AG2-2 and Sclerotinia homoeocarpa. Growth inhibition effect of S8 isolate against S. homoeocarpa was appeared to 94.8%, S2 to 76.9%, S5 to 46.1% and S12 to 43.5%. The significant inhibition effects on mycelial growth of S. homoeocarpa were shown on media with four strains. The inhibition effect was the highest with S8 strain treatment at 94.8%.
Keywords
Biocontrol; Rhizosphere; Rhizoctonia solani AG2-2; Streptomyces; Sclerotinia homoeocarpa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alexander, D.B. and Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12:39-45.   DOI
2 Alnahdi, H.S. 2012. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. App. Pharm. Sci. 2:071-074.
3 Anitha, A. and Rabeeth, M. 2010. Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. Afr. J. Plant Sci. 4:61-66.
4 Ariffin, H., Abdullah, N., Umi Kalsom, M.S., Shirai, Y. and Hassan, M.A. 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 3:47-53.
5 Berdy, J. 2005. Bioactive microbial metabolites: A personal view. J. Antibiot. 58:1-26.   DOI
6 Beard, J.B. 1973. Turfgrass: Science and Culture. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA. p. 658.
7 Boller, T., Gehri, A., Mauch, F. and Vogeli, U. 1983. Chitinase in bean leaves: Induction by ethylene, purification, properties and possible functions. Planta. 157:22-31.   DOI
8 Buysens, S., Heungens, K., Poppe, J. and Hofte, M. 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62:865-871.
9 Cao, L., Qiu, Z.D.X., Tan, H., Lin, Y. and Zhou, S. 2004. Isolation of endophytic actinobacteria from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20:501-504.   DOI
10 Chamberlain, K. and Crawford, D.L. 2000. Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can. J. Microbiol. 46:550-558.   DOI
11 Crawford, D.L. 1978. Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35:1041-1045.
12 Danaei, M., Baghizadeh, A., Pourseyedi, S., Amini, J. and Yaghoobi, M.M. 2014. Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. Euro. J. Exp. Bio. 4:334-339.
13 Datta, K., Shiha, S. and Chattopadhyay, P. 2000. Reactive oxygen species in health and disease. Natl. Med. J. India. 13:304-310.
14 Du, W.X., Olsen, C.W., Avena-Bustillos, R.J., McHugh, T.H., Levin, C.E., et al. 2008. Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrolcontaining edible tomato films. J. Food Sci. 73:378-383.
15 Errakhi, R., Bouteau, F., Lebrihi, A. and Barakate, M. 2007. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J. Microbiol. Biotechnol. 23:1503-1509.   DOI
16 Fernando, W.G.D., Ramarathnama, R., Krishnamoorthyb, A.S. and Savchuka, S.C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37:955-964.   DOI
17 Fravel, D.R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-59.   DOI
18 Gupta, R., Saxena, R.K., Chaturvedi, P. and Virdi, J.S. 1995. Chitinase production by Streptomyces viridificans: its potential in cell wall lysis. J. Appl. Bacteriol. 78:378-383   DOI
19 Gerber, N.N. and Lechevalier, H.A. 1965. Geosmin, an earthlysmelling substance isolated from actinomycetes. Appl. Microbiol. 13:935-8.
20 Glick, B.R., Patten, C.L., Holguin, G. and Penrose, D.M. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press. London, UK.
21 Hamdan, H., Weller, D. and Thomashow, L. 1991. Relative importance of fluorescens siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol. 57:3270-3277.
22 Hayakawa, M. and Nomura, S. 1987. Humic acid-vitamin agar. A new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65:501-509.   DOI
23 Hayakawa, M., Yoshida, Y. and Iimura, Y. 2004. Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J. Appl. Microbiol. 96:973-81.   DOI
24 Hirsch, C.F. and Christensen, D.L. 1983. Novel method for selective isolation of Actinomycetes. Appl. Environ. Microbiol. 46:925-929.
25 James, P.D.A., Iqbal, M., Edwards, C. and Miller, P.G.G. 1991. Extra cellular protease activity in protease activity in antibiotic producing Streptomyces thermovioleceus. Curr. Microbial. 22:377-382.   DOI
26 Jayasree, D., Sandhya Kumari, T.D., Kavi Kishor, P.B., Vijaya Lakshmi, M. and Lakshmi Narasu, M. 2010. Optimization of production protocol of alkaline protease by Streptomyces pulvereceus. Indian J. Pharm. Sci. 72:161-166.   DOI
27 Kucuk, C. and Kivanc, M. 2004. In vitro antifungal activity of strains of Trichoderma harzianum. Turk. J. Biol. 28:111-115.
28 Martin, S.B. and Dale, J.L. 1980. Biodegradation of turf thatch with wood-decay fungi. Phytopathol. 70:297-301.   DOI
29 Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., et al. 2010. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol. Technol. 58:157-165.   DOI
30 Loper, J.E. and Henkels, M.D. 1999. Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:5357-5363.
31 McLoughlin, T., Quinn, J., Bettermann, A. and Bookland, R. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58:1760-1763.
32 Nawani, N.N., Kapadnis, B.P., Das, A.D., Rao, A.S. and Mahajan, S.K. 2002. Purification and characterization of a thermophilic and acidophilicchitinase from Microbispora sp. V2. J. Appl. Microbiol. 93:965-75.   DOI
33 Pichersky, E., Noel, J.P. and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Sci. 311:808-811.   DOI
34 Sanglier, J.J., Haag, H., Huck, T.A. and Fehr, T. 1993. "Novel bioactive compounds from actinomycetes: a short review (1988-1992)," Research in Microbiology, vol. 144, no. 8, pp. 633-642.   DOI
35 Sandhya, C., Adapa, L.K., Nampoothiri, K.M., Binod, P., Szakacs, G., et al. 2004. Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J. Basic Microbiol. 44:49-58.   DOI
36 Sazci, A., Erenler, K. and Radford, A. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61:559-562.   DOI
37 Shirai, K. 2006. Fungal chitinases. pp. 289-304. In: Guevara-Gonzalez, R.G. and Torres-Pacheco, I. (Eds.). Advances in agricultural and food biotechnology. Kerala: Research Signpost.
38 Scholler, C.E.G., Gurtler, H., Pedersen, R., Molin, S. and Wilkins, K. 2002. Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50:2615-2621.   DOI
39 Schwyn, B. and Neilands, J.B. 1987. Universal CAS assay for the detection and determination of siderophores. Anal. Biochem. 160:47-60.   DOI
40 Seuk, C., Paulita, T. and Baker, R. 1988. Attributes associate with increased biocontrol activity of fluorescent Pseudomonads. J. Plant Pathol. 4:218-225.
41 Tanaka, T., Fujiwara, S., Nishikori, S., Fukui, T., Takagi, M., et al. 1999. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl. Environ. Microbiol. 65:5338-5344.
42 Turgeon, A.J., Hurto, K.A. and Spome, L.A. 1977. Thatch as a turfgrass growing medium. Illinois Res. 19:3-4.
43 Wan, M., Li, G., Zhang, J., Jiang, D. and Huang, H.C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control. 46:552-559.   DOI
44 Adhi, T.P., Korus, R.A. and Crawford, D.L. 1989. Production of major extracellular enzymes during lignocellulose degradation by two Streptomycetes in agitated submerged culture. Appl. Environ. Microbiol. 55:1165-1168.
45 Abeles, F.B., Bosshart, R.P., Forrence, L.E. and Habig, W.H. 1971. Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol. 47:129-34.   DOI