• Title/Summary/Keyword: wedge splitting test

Search Result 27, Processing Time 0.027 seconds

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

Determination of Mode I Fracture Toughness of Rocks Using Wedge Splitting Test (쐐기 분열 시험을 이용한 암석의 모드 I 파괴인성 측정)

  • Ko, Tae Young;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.523-531
    • /
    • 2019
  • In the applications of rock mechanics or rock engineering including drill and blast, drilling and mechanical excavation, the fracture toughness is an important factor. Several methods have been proposed to measure the fracture toughness of rocks. In this study, wedge splitting test specimen which is prepared with ease and tested under compression loading was used to obtain mode I fracture toughness of rocks. The equation of stress intensity factor through numerical analysis is proposed from the stress state of crack tip considering both vertical and horizontal loads due to the vertical load acting on the wedge. The validity of the wedge splitting test method was confirmed by comparing the mode I fracture toughness values obtained by the GD and SENB test specimens.

Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites (입자강화 복합재료의 쐐기분열시험 및 파괴에너지 평가)

  • Na, Seong Hyeon;Kim, Jae Hoon;Choi, Hoon Seok;Park, Jae Beom;Kim, Shin Hoe;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.253-258
    • /
    • 2016
  • The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement (CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were $50^{\circ}C$, room temperature, $-40^{\circ}C$, and $-60^{\circ}C$. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from $50^{\circ}C$ to $-40^{\circ}C$. In addition, the strength of the particulate reinforced composites increased sharply at $-60^{\circ}C$, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

Study on fracture characteristics of reinforced concrete wedge splitting tests

  • HU, Shaowei;XU, Aiqing;HU, Xin;YIN, Yangyang
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.337-354
    • /
    • 2016
  • To study the influence on fracture properties of reinforced concrete wedge splitting test specimens by the addition of reinforcement, and the restriction of steel bars on crack propagation, 7 groups reinforced concrete specimens of different reinforcement position and 1 group plain concrete specimens with the same size factors were designed and constructed for the tests. Based on the double-K fracture criterion and tests, fracture toughness calculation model which was suitable for reinforced concrete wedge splitting tensile specimens has been obtained. The results show that: the value of initial craking load Pini and unstable fracture load Pun decreases gradually with the distance of reinforcement away from specimens's top. Compared with plain concrete specimens, addition of steel bar can reduce the value of initial fracture toughness KIini, but significantly increase the value of the critical effective crack length ac and unstable fracture toughness KIun. For tensional concrete member, the effect of anti-cracking by reinforcement was mainly acted after cracking, the best function of preventing fracture initiation was when the steel bar was placed in the middle of the crack, and when the reinforcement was across the crack and located away from crack tip, it plays the best role in inhibiting the extension of crack.

Nonlinear analysis of connectors applied on concrete composite constructions

  • Winkler, B.;Bianchi, P.;Siemers, M.
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.91-102
    • /
    • 2006
  • To place concrete overlays has become a standard application in the strengthening and rehabilitation of concrete structures such as bridges, tunnels, parking decks and industrial buildings. In general, connectors are used to ensure a monolithic behavior of the two concrete layers. Within the framework of the development of a new connector wedge splitting tests and shear tests were performed, in addition nonlinear finite element analyses were applied to investigate the load transfer behavior of the connectors for different prototypes. The numerical simulation results were compared to experimental data. The computed load-displacement curve demonstrates good correspondence with the curves obtained in the experiments, and the experimental crack patterns are reasonably simulated by the computed crack propagation. Both numerical and experimental investigations on the wedge splitting test and on the shear test served as basis for the development of new type of connectors.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

Experimental Study for Tensile Softening Response of Plain Concrete (무근 콘크리트 인장연화응답의 실험적 연구)

  • 이상근;강태경;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.423-426
    • /
    • 2001
  • In this paper a large scale direct tension test of plain concrete is represented. Two independently controlled actuators were used to ensure a homogeneous tensile field and to avoid secondary flexural stresses. Fracture energies evaluated by a classical prediction equation and this test are compared. The result indicated that the classical prediction equation is not adequate to predict the fracture energy of large sized specimens. From this test, it was determined that the fracture energy obtained from large scale direct tension tests is significantly higher than the one obtained in wedge splitting tests on laboratory sized specimens. But the tensile strength was about half the value determined from splitting tensile strength test with cylindrical specimens.

  • PDF

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴특성)

  • Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

Evaluation of Fracture Behavior on Particle Reinforced Composite Using Digital Image Correlation (DIC를 이용한 입자강화 복합재료의 파괴거동 평가)

  • Hong, Sang-Hyun;Lee, Jeong-Won;Kim, Jae-Hoon;Lee, Sang-Yeon;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.535-541
    • /
    • 2018
  • In this study, wedge splitting tests were performed to evaluate fracture behavior of particle reinforced composite materials. Crack resistance was evaluated by using CTOD (crack tip opening displacement) and crack tip opening angle (CTOA). The particle reinforced composites were tested under various temperature ($-60^{\circ}C{\sim}50^{\circ}C$) and load speed (5~500mm/min). Also, digital image correlation method (DIC) was used to analyze the strain field at crack tip. Test results showed that the fracture energy increased with decreasing temperature and crack resistance increased with increasing load velocity.