• Title/Summary/Keyword: web shear

Search Result 353, Processing Time 0.033 seconds

Shear Strength and Deformability of HSC Shear Walls (고강도 콘크리트 전단벽의 강도와 변형능력)

  • 윤현도;최창식;오영훈;이훈희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.925-930
    • /
    • 2003
  • Provisions for ACI 318-02 and NZS 3101 pertaining to shear design of shear walls evaluated the applicability of high-strength, concrete shear walls subjected to lateral loads. Results of 73 tests of reinforced concrete shear walls were reviewed. Evaluation of test results conducted in Korea, England, America, Japan, and Australia for low-aspect ratio walls indicates that the nominal unit shear strength($\phi$=1.0) calculated using the provisions of ACI and NZS does not represent the observed shear strength well. Based on the limited database considered in this study, a reasonable lower bound to the shear strength of high-strength concrete shear walls is found to be $\sqrt[0.4]{f_{cu}}$ MPa. Similar to that of normal strength concrete walls, the rate of increase of the measured shear strength with $$\rho$_n/ㆍf_y$ is less than 1.0. Therefore, the rate of increase of shear strength attributable to the web reinforcement in shear walls appears to be overestimated by the modified truss analogy.

  • PDF

Natural frequency of a composite girder with corrugated steel web

  • Moon, Jiho;Ko, Hee-Jung;Sung, Ik Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.255-271
    • /
    • 2015
  • This paper presents the natural frequency of a composite girder with corrugated steel web (CGCSW). A corrugated steel web has negligible in-plane axial stiffness, due to the unique characteristic of corrugated steel webs, which is called the accordion effect. Thus, the corrugated steel web only resists shear force. Further, the shear buckling resistance and out-of-plane stiffness of the web can be enhanced by using a corrugated steel web, since the inclined panels serve as transverse stiffeners. To take these advantages, the corrugated steel web has been used as an alternative to the conventional pre-stressed concrete girder. However, studies about the dynamic characteristics, such as the natural frequency of a CGCSW, have not been sufficiently reported, and it is expected that the natural frequency of a CGCSW is different from that of a composite girder with flat web due to the unique characteristic of the corrugated steel web. In this study, the natural frequency of a CGCSW was investigated through a series of experimental studies and finite element analysis. An experimental study was conducted to evaluate the natural frequency of CGCSW, and the results were compared with those from finite element analysis for verification purpose. A parametric study was then performed to investigate the effect of the geometric characteristics of the corrugated steel web on the natural frequency of the CGCSW. Finally, a simplified beam model to predict the natural frequency of a CGCSW was suggested.

Evaluation of Structural Performance of Precast Prestressed Hollow-Core Slabs with Shear Reinforcement (전단철근이 배치된 프리캐스트 프리스트레스트 중공슬래브의 구조성능 평가)

  • Sang-Yoon Kim;Seon-Hoon Kim;Deuck-Hang Lee;Sun-Jin Han;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • This study aims to investigate the structural performance of hollow-core slab (HCS) memebers with 400 mm thickness. To this end, a total of four HCS specimens were fabricated based on the individual mold method to provide shear reinforcement, unlike the extrusion method. The key variables were chosen as the presence of topping concrete, core-filling concrete, and shear reinforcements. The crack patterns and load-displacement responses of the test specimens were analyzed in detail. Test results showed that inclined shear cracking occurred all the specimens, and that the specimen with shear reinforcement on the web of HCS unit had higher strength and ductility than the specimen without shear reinforcement. In particular, shear reinforcements placed on the web of HCS unit effectively resisted not only to vertical shear force but also to horizontal shear force between the interface of HCS unit and topping concrete. In addition, it was discovered that the method in which shear reinforcements are placed on the web of HCS unit is more effective in improving structural performance than core-filling method.

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.

Experimental Study on Variation of Shear Strength of Reinforced Concrete Beams According to Design Parameters (설계변수에 따른 철근콘크리트 보의 전단강도 변화에 대한 실험연구)

  • Oh, Dong-Hyun;Choi, Kyung-Kyu;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.279-282
    • /
    • 2005
  • Experimental study is performed to investigate the variation of shear strength of reinforced concrete beams according to design parameters. The major parameters are loading condition, shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, prestress and boundary rigidity.14 reinforced concrete beams without web reinforcement are tested under monotonic downward loading. The shear strength of the tested specimens were compared with the prediction by design code and Choi's method.

  • PDF

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF

A Study on the Structural Properties of RC Beams with Web Openings using Square Steel Tube (각형강관을 이용한 RC 유공보의 구조 특성 연구)

  • Lee, Seung-Jo;Park, Jung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.85-86
    • /
    • 2010
  • This study is aimed to investigate on the structural properties (like as strength, failure mode, ductility) of beams with web openings reinforced with steel tube of square. The main parameters are follows; 1) with and without web opening 2) the number of opening, 3) location of openings. In the quasi-static tests, structural properties of PFBS1A and PFBS2A were most superior. When the locations of opening are respectively maximal moment zone (M), shear (S), co-existence area of moment and shear (M+S), the specimen with web opening at maximal moment zone is not less than that without web opening in terms of strength and ductility.

  • PDF

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field (대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.

Analytical study on Reinforced Concrete Deep Beams with Opening (철근콘크리트 유공 깊은 보에 대한 해석적 연구)

  • 이석주;이종권;이병해
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.587-592
    • /
    • 2000
  • As the residential spaces become high-rised and high-density, Multi-story buildings were constructed with transfer girders, Deep beams, wall foundations, floor diaphragms an shear walls which may have column offsets. Especially, In the analysis and design of Multi-story buildings, the lateral loads must be taken into account. But, there have been no appropriate theory and national design code for predicting ultimate shear strength of reinforced concrete Deep beams with web opening. Only empirical and semi-empirical formulas for predicting their ultimate load bearing capacities due to the complexities of the structural non-linearity and material heterogeneity. So this study analyze tow-dimensional finite element model that represents exactly the behavior of real structures with SBETA which are general nonlinear finite element analysis program, and compare the results with that from the real reinforced Concrete Deep beams with web opening tests. From the comparison, and parametric study, The Study presents the elementary data of the earthquake resistance for the reinforced concrete Deep beams with web opening.

  • PDF