• Title/Summary/Keyword: weathered granite soils

Search Result 132, Processing Time 0.03 seconds

Examination of the Relationship between Average Particle Size and Shear Strength of Granite-derived Weathered Soils through 2-D Distinct-element Method (이차원 개별요소 수치해석을 통한 화강풍화토의 평균입자크기와 전단강도의 관계 규명)

  • Kim, Seon-Uk;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.77-86
    • /
    • 2012
  • We have carried out a series of numerical experiments to study the effect of average particle size on the mechanical properties of granite-derived weathered soils. A distinct-element method was adopted to study the changes in macro-scale mechanical properties with particle size and maximum-to-minimum particle size ratio. The numerical soil specimen with cohesion values of 0.25 MPa and internal friction angle of 29 degrees was prepared for reference. While keeping the porosity values constant, we varied particle size and size distribution to study how cohesion and internal friction angle changes. The experimental results show that the values of cohesion apparently decrease with increasing particle size. Changes in the values of internal friction angles are small, but there is a trend of increase in internal friction angle as the average particle size increases. This study demonstrates a possibility that the results of numerical experiments of this type may be used for rapid estimation of mechanical properties of granite-derived weathered soils. For example, when mechanical properties obtained through in situ tests and particle size data obtained through lab analysis are available for a site, it is expected that the mechanical properties of weathered granite soils with varying degrees of weathering (thus, varying particle size) may be estimated rapidly only with particle size data for that site.

Comparisons of the major element contents for the Korean ginsengs from various soils of Keumsan (금산의 다양한 토양으로부터 채취된 고려 인삼의 주 원소 함량 비교)

  • Song, Suck-Hwan;Min, Ell-Sik;Chang, Gyu-Sick
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.194-209
    • /
    • 2008
  • This study is for major element relationships between ginsengs and soils from three representative soil types from Keumsan, shale, phyllite and granite. In the weathered soils, the granite and phylllite are high while the shale are low. The granite show distinctive positive and negative relationships rather than the phyllite and shale. In the field soils, the granite and phyllite are high while the shale are low. Positive relationships are distinctive with the increasing ages, and in the granite. In the ginsengs, high element contents are shown in K and Na of the shale, Mg and Ca of the phyllite, and Al, Mn and Ti of the granite. In the same regions, the 2 and 3 years are mainly low, but high in the 4 year. Positive correlations are distinctive in the 2 and 4 year of the shale, and 3 year of the granite. Comparisons with ginsengs of the same ages from the different areas suggest that the granite show high element contents with the ages. It also suggests that the 2 year of the granite, and 3 and 4 year of the shale and phyllite are high. Relative ratios(weathered/field soils) among the soils suggest that the weathered are generally high, especially in the granite rather than the shale. Relative ratios between field soils and ginsengs(field soils/ginseng) suggest that the soils are higher than the ginsengs, and differences of several hundred times in the Al and Ti, and of several ten times in the Mn are shown between two. Comparisons among the different ages from the same areas suggest that differences of several hundred times in the Al and Ti are shown. It suggests that ginseng contents are significantly different from the field soils in the Al and Ti contents. Comparisons among from the same ages of the different areas suggest that high element differences are shown in Na of the shale, and Mn of the phyllite, while low element differences are found in Mg of the shale, and Al, Mn, and Na of the granite.

Mineralogy and Cheimical Composition of Soils with Relation to the Types of Parent Rocks in the Northern Pusan Area (부산 북부지역의 모암유형에 따른 토양의 구성광물 및 화학성분)

  • 김의선;황진연;김진섭;함세영;김재곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • The Cretaceous granite, andesite and sedimentary rocks are widely distributed in the northern Pusan area. The present study investigates mineralogical and geochemical charateristics of residual and cultivated soils derived from these rocks. The soils of granite area contain a large amount of quartz relative to clay minerals, whereas the soils of the andesite area contain more clay minerals than quartz. Clay minerals consist mainly of kaolin minerals illite hydroxy interlayered vermiculite interstratified mica/vermiculite and chlorite. Kaolin minerals are abundant in paddy soils while illite is abundant in less weathered soils. Si and K are major elements in the soils of granite area while Fe and Al in the soils of andesite area. In all the soils Ca, Mg and Na were generally depleted in comparison to those in parent rocks. Analysis data of trace element show that the enrichment pattern in soils depends on parent rock type with high oncentration of some elements over 100 ppm: Ba and Rb in granite area Zn, Bn, and V in andesite area, and Ba and V in sedimentary rock. In granite area, Rb and Th were greatly enriched in soil than in parent rocks. However, Cr, Ni and Sr commonly decrease, whereas Pb increases in all the soils. Exchangeable cation capacity(CEC) is relatively high in the soils of andesite are including abundant clay minerals. Collective evidences prove that the mineralogical and chemical compositions of soils are strongly dependent on the parent rock type. The mineralogy and chemistry of long cultivated soils are not significantly different from those of residual soils.

  • PDF

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

Analysis of Rainfall Infiltration Velocity for Unsaturated Soils by an Unsaturated Soil Column Test : Comparison of Weathered Gneiss Soil and Weathered Granite Soil (불포화토 칼럼시험을 통한 불포화토 내 강우침투속도 분석: 편마암 풍화토와 화강암 풍화토의 비교)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su;Park, Hyuek-Jin
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.71-82
    • /
    • 2011
  • The unsaturated soil column tests were carried out for weathered gneiss soil and weathered granite soil in order to obtain the relationship between rainfall intensity and infiltration velocity of rainfall on the basis of different unit weight conditions of soil. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at constant time interval. For the column test, three different unit weights were used as in-situ condition, loose condition and dense condition, and rainfall intensities were selected as 20 mm/h and 50 mm/h. In 20 mm/h rainfall intensity condition, average rainfall infiltration velocities for both gneiss and weathered granite soils were obtained as $2.854{\times}10^{-3}$ cm/s ~ $1.297{\times}10^{-3}$ cm/s for different unit weight values and $2.734{\times}10^{-3}$ cm/s ~ $1.707{\times}10^{-3}$ cm/s, respectively. In 50 mm/h rainfall intensity condition, rainfall infiltration velocities were obtained as $4.509{\times}10^{-3}$ cm/s ~ $2.016{\times}10^{-3}$ cm/s and $4.265{\times}10^{-3}$ cm/s ~ $3.764{\times}10^{-3}$ cm/s respectively. The test results showed that the higher rainfall intensity and the lower unit weight of soil, the faster average infiltration velocity. In addition, the weathered granite soils had faster rainfall infiltration velocities than those of the weathered gneiss soils except for the looser unit weight conditions. This is due to the fact that the weathered granite soil had more homogeneous particle size, smaller unit weight condition and larger porosity.

The Characteristics of Bearing Capacity for Granite Soils by N-Value (N 값에 따른 화강 풍화토의 지지력 특성 평가)

  • Hwang, Eui-Suk;Jung, Kyung-Gu;Song, Chi-Yong;Lee, Jong-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.784-791
    • /
    • 2008
  • This study is to evaluate the characteristics of bearing capacity for granite soils by N-value. The partial data is investigated for practical evaluation of weathering degree and bearing capacity on granite soils. The settlement is linearly decreased when the N-value is less than 50, but the settlement isn't constant when the N-value is more than 50. This is the affect of ground water. Therefore ground water is detailed evaluated. The bearing capacity is linearly increased when the N-value is less than 30, is inactively increased when the N-value is between 30 to 50, is constant when the value is more than 50.

  • PDF

Mechanical Characteristics of Weathered Granite Soils for Degree of Weathering and Saturation (풍화도과 포화도에 따른 화강토의 역학적 특성)

  • Lim, Seongyoon;Song, Changseob;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.93-100
    • /
    • 2015
  • The object of this paper is to study the shear characteristics of the weathered granite soil. To this end, a series of consolidated undrained triaxial compression tests are carried out to investigate the shear parameters-cohesion and internal friction angle-for the degree of saturation and degree of weathering. From the results, it is found that the shear parameters of weathered granite soil are influenced on the degree of saturation, degree of weathering and disturbance. Especially, internal friction angle is more influenced on the upper factors than cohesion. And shear parameters are more acted on the degree of saturation than the degree of weathering in the test range. It is, therefore, recommended that must be considered the conditions of granite soil-degree of saturation, degree of weathering and disturbance etc-in case of the calculation of bearing capacity, stability analysis and other designs with shear parameters.

Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju

  • Ban, Jae-Doo;Moon, Seong-Woo;Lee, Seong-Won;Lee, Joo-Gong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.451-462
    • /
    • 2017
  • Physical weathering caused by external forces and chemical weathering caused by the decomposition or alteration of constituent materials are the two factors that dominate the mechanical properties of rocks. In this study, a field investigation was undertaken to identify the physical and chemical weathering characteristics of the biotite granite and granitic weathered soils in Gyeongju, South Korea. Samples were collected according to their grade of weathering and subjected to modal analysis, XRD analysis, XRF analysis, physical property tests, particle size distribution tests, and slake durability tests. Modal and XRD analysis identified these rocks as biotite granite; secondary alteration minerals were not observed. Physical property tests and particle size distribution analyses indicate an average porosity of 41.28% and a sand content of > 90 wt.%. These values are somewhat higher than those of granites in general. The results of the slake durability test and XRF analyses show that the physical and chemical weathering indices of the samples vary with the degree of weathering.

Apparent Coefficients of Friction between Weathered Granite Soils and Strip Reinforcements (화강토에서의 띠 보강재의 겉보기마찰계수)

  • 김상규;이은수
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.137-154
    • /
    • 1996
  • Pull-out tests for three different types of strip reinforcements are performed to investigate variation of the apparent coefficient of friction which occurs between the reinforcements and the weathered granite soils with different contents of fine materials. The contents of fine materials for the soil sample are varied from 7% to 36% and the reinforcements used for the pullout tests are smooth, ribbed steel strips and a textured shape Paraweb 1 Friction tie. Test results show that the apparent coefficient of friction tends to decrease with the increase of the content of fine meterials. It is known, however, that the minimum apparent coefficient of friction required to the design of reinforced earth structures can be achieved even at 35% fine contents by using appropriate reinforcements. The ribbed strip reinforcement is found to be the most effective in mobilizing the apparent friction when interacting to finer weathered granite soils. The textured reinforcement is also useful for 35% fine con tents if the textured depth is increased.

  • PDF