• Title/Summary/Keyword: weather models

Search Result 619, Processing Time 0.024 seconds

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF

Prediction of Solar Photovoltaic Power Generation by Weather Using LSTM

  • Lee, Saem-Mi;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.23-30
    • /
    • 2022
  • Deep learning analyzes data to discover a series of rules and anticipates the future, helping us in various ways in our lives. For example, prediction of stock prices and agricultural prices. In this research, the results of solar photovoltaic power generation accompanied by weather are analyzed through deep learning in situations where the importance of solar energy use increases, and the amount of power generation is predicted. In this research, we propose a model using LSTM(Long Short Term Memory network) that stand out in time series data prediction. And we compare LSTM's performance with CNN(Convolutional Neural Network), which is used to analyze various dimensions of data, including images, and CNN-LSTM, which combines the two models. The performance of the three models was compared by calculating the MSE, RMSE, R-Squared with the actual value of the solar photovoltaic power generation performance and the predicted value. As a result, it was found that the performance of the LSTM model was the best. Therefor, this research proposes predicting solar photovoltaic power generation using LSTM.

The Effects of Road Geometry on the Injury Severity of Expressway Traffic Accident Depending on Weather Conditions (도로기하구조가 기상상태에 따라 고속도로 교통사고 심각도에 미치는 영향 분석)

  • Park, Su Jin;Kho, Seung-Young;Park, Ho-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.12-28
    • /
    • 2019
  • Road geometry is one of the many factors that cause crashes, but the effect on traffic accident depends on weather conditions even under the same road geometry. This study identifies the variables affecting the crash severity by matching the highway accident data and weather data for 14 years from 2001 to 2014. A hierarchical ordered Logit model is used to reflect the effects of road geometry and weather condition interactions on crash severity, as well as the correlation between individual crashes in a region. Among the hierarchical models, we apply a random intercept model including interaction variables between road geometry and weather condition and a random coefficient model including regional weather characteristics as upper-level variables. As a result, it is confirmed that the effects of toll, ramp, downhill slope of 3% or more, and concrete barrier on the crash severity vary depending on weather conditions. It also shows that the combined effects of road geometry and weather conditions may not be linear depending on rainfall or snowfall levels. Finally, we suggest safety improvement measures based on the results of this study, which are expected to reduce the severity of traffic accidents in the future.

Utilizing Integrated Public Big Data in the Database System for Analyzing Vehicle Accidents

  • Lee, Gun-woo;Kim, Tae-ho;Do, Songi;Jun, Hyun-jin;Moon, Yoo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.99-105
    • /
    • 2017
  • In this paper, we propose to design and implement the database management system for analyzing vehicle accidents through utilizing integration of the public big data. And the paper aims to provide valuable information for recognizing seriousness of the vehicle accidents and various circumstances at the accident time, and to utilize the produced information for the insurance company policies as well as government policies. For analysis of the vehicle accidents the system utilizes the integrated big data of National Indicator System, the Meteorological Office, National Statistical Office, Korea Insurance Development Institute, Road Traffic Authority, Ministry of Land, Infrastructure and Transport as well as the National Police Agency, which differentiates this system from the previous systems. The system consists of data at the accident time including weather conditions, vehicle models, age, sex, insurance amount etc., by which the database system users are able to obtain the integral information about vehicle accidents. The result shows that the vehicle accidents occur more frequently in the clear weather conditions, in the vehicle to vehicle conditions and in crosswalk & crossway. Also, it shows that the accidents in the cloudy weather leads more seriously to injury and death than in the clear weather. As well, the vehicle accident information produced by the system can be utilized to effectively prevent drivers from dangerous accidents.

Investigation of the Gas Accident Models through the Analysis Gas Accident Occurring Environment (가스사고 발생 환경분석을 통한 사고발생 모형 고찰)

  • Hur, Young-Taeg;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.27-33
    • /
    • 2010
  • Analysis of gas accidents for 11.5 years, from 1998 to June, 2009, by types has been made in this study to prevent the recurrence of accidents through the analysis of gas accident occurring environment. Gas using environment and gas accidents are forced to be closely connected since the number of gas accidents has not only been decreased but occurred steadily and gas using types are changing by time period, weather, etc. in terms of accident contents. Gas accidents have been occurred more in capital areas with larger gas usage and specific local governments. The possibility of the gas accidents hit the highest when the weather is clear, the wind speed is low and the humidity is in the middle. In addition, leakage of gas, fire or explosion are also considered to be closely related with the weather as a result of model observance of gas accidents types. All the gas related possible accidents are also considered to be predictable if this result is to be analysed in association with the weather.

Analysis of Regional-Scale Weather Model Applicabilities for the Enforcement of Flood Risk Reduction (홍수피해 감소를 위한 지역규모 기상모델의 적용성 분석)

  • Jung, Yong;Baek, JongJin;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.267-272
    • /
    • 2012
  • To reduce the flood risk caused by unexpected heavy rainfall, many prediction methods for flood have been developed. A major constituent of flood prediction is an accurate rainfall estimation which is an input of hydrologic models. In this study, a regional-scale weather model which can provide relatively longer lead time for flood mitigation compared to the Nowcasting based on radar system will be introduced and applied to the Chongmi river basin located in central part of South Korea. The duration of application of a regional weather model is from July 11 to July 23 in 2006. The estimated rainfall amounts were compared with observations from rain gauges (Sangkeuk, Samjook, and Sulsung). For this rainfall event at Chongmi river basin, Thomson and Kain-Frisch Schemes for microphysics and cumulus parameterization, respectively, were selected as optimal physical conditions to present rainfall fall amount in terms of Mean Absolute Relative Errors (MARE>0.45).

Convolutional Neural Networks for Rice Yield Estimation Using MODIS and Weather Data: A Case Study for South Korea (MODIS와 기상자료 기반 회선신경망 알고리즘을 이용한 남한 전역 쌀 생산량 추정)

  • Ma, Jong Won;Nguyen, Cong Hieu;Lee, Kyungdo;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.525-534
    • /
    • 2016
  • In South Korea, paddy rice has been consumed over the entire region and it is the main source of income for farmers, thus mathematical model for the estimation of rice yield is required for such decision-making processes in agriculture. The objectives of our study are to: (1) develop rice yield estimation model using Convolutional Neural Networks(CNN), (2) choose hyper-parameters for the model which show the best performance and (3) investigate whether CNN model can effectively predict the rice yield by the comparison with the model using Artificial Neural Networks(ANN). Weather and MODIS(The MOderate Resolution Imaging Spectroradiometer) products from April to September in year 2000~2013 were used for the rice yield estimation models and cross-validation was implemented for the accuracy assessment. The CNN and ANN models showed Root Mean Square Error(RMSE) of 36.10kg/10a, 48.61kg/10a based on rice points, respectively and 31.30kg/10a, 39.31kg/10a based on 'Si-Gun-Gu' districts, respectively. The CNN models outperformed ANN models and its possibility of application for the field of rice yield estimation in South Korea was proved.

Prediction of Galloping Accidents in Power Transmission Line Using Logistic Regression Analysis

  • Lee, Junghoon;Jung, Ho-Yeon;Koo, J.R.;Yoon, Yoonjin;Jung, Hyung-Jo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.969-980
    • /
    • 2017
  • Galloping is one of the most serious vibration problems in transmission lines. Power lines can be extensively damaged owing to aerodynamic instabilities caused by ice accretion. In this study, the accident probability induced by galloping phenomenon was analyzed using logistic regression analysis. As former studies have generally concluded, main factors considered were local weather factors and physical factors of power delivery systems. Since the number of transmission towers outnumbers the number of weather observatories, interpolation of weather factors, Kriging to be more specific, has been conducted in prior to forming galloping accident estimation model. Physical factors have been provided by Korea Electric Power Corporation, however because of the large number of explanatory variables, variable selection has been conducted, leaving total 11 variables. Before forming estimation model, with 84 provided galloping cases, 840 non-galloped cases were chosen out of 13 billion cases. Prediction model for accidents by galloping has been formed with logistic regression model and validated with 4-fold validation method, corresponding AUC value of ROC curve has been used to assess the discrimination level of estimation models. As the result, logistic regression analysis effectively discriminated the power lines that experienced galloping accidents from those that did not.

EVALUATION OF AN ENHANCED WEATHER GENERATION TOOL FOR SAN ANTONIO CLIMATE STATION IN TEXAS

  • Lee, Ju-Young
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Several computer programs have been developed to make stochastically generated weather data from observed daily data. But they require fully dataset to run WGEN. Mostly, meterological data frequently have sporadic missing data as well as totally missing data. The modified WGEN has data filling algorithm for incomplete meterological datasets. Any other WGEN models have not the function of data filling. Modified WGEN with data filling algorithm is processing from the equation of Matalas for first order autoregressive process on a multi dimensional state with known cross and auto correlations among state variables. The parameters of the equation of Matalas are derived from existing dataset and derived parameters are adopted to fill data. In case of WGEN (Richardson and Wright, 1984), it is one of most widely used weather generators. But it has to be modified and added. It uses an exponential distribution to generate precipitation amounts. An exponential distribution is easier to describe the distribution of precipitation amounts. But precipitation data with using exponential distribution has not been expressed well. In this paper, generated precipitation data from WGEN and Modified WGEN were compared with corresponding measured data as statistic parameters. The modified WGEN adopted a formula of CLIGEN for WEPP (Water Erosion Prediction Project) in USDA in 1985. In this paper, the result of other parameters except precipitation is not introduced. It will be introduced through study of verification and review soon

  • PDF

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.