DOI QR코드

DOI QR Code

Convolutional Neural Networks for Rice Yield Estimation Using MODIS and Weather Data: A Case Study for South Korea

MODIS와 기상자료 기반 회선신경망 알고리즘을 이용한 남한 전역 쌀 생산량 추정

  • Ma, Jong Won (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Nguyen, Cong Hieu (Dept. of Civil and Environmental Engineering, Yonsei University) ;
  • Lee, Kyungdo (National Institute of Agricultural Science, RDA) ;
  • Heo, Joon (Dept. of Civil and Environmental Engineering, Yonsei University)
  • Received : 2016.09.28
  • Accepted : 2016.10.23
  • Published : 2016.10.31

Abstract

In South Korea, paddy rice has been consumed over the entire region and it is the main source of income for farmers, thus mathematical model for the estimation of rice yield is required for such decision-making processes in agriculture. The objectives of our study are to: (1) develop rice yield estimation model using Convolutional Neural Networks(CNN), (2) choose hyper-parameters for the model which show the best performance and (3) investigate whether CNN model can effectively predict the rice yield by the comparison with the model using Artificial Neural Networks(ANN). Weather and MODIS(The MOderate Resolution Imaging Spectroradiometer) products from April to September in year 2000~2013 were used for the rice yield estimation models and cross-validation was implemented for the accuracy assessment. The CNN and ANN models showed Root Mean Square Error(RMSE) of 36.10kg/10a, 48.61kg/10a based on rice points, respectively and 31.30kg/10a, 39.31kg/10a based on 'Si-Gun-Gu' districts, respectively. The CNN models outperformed ANN models and its possibility of application for the field of rice yield estimation in South Korea was proved.

쌀은 오랜 기간 동안 남한 지역의 주식임과 동시에 농부들의 주 수입원이며, 농업 분야 관련 정책 수립을 위한 수학적인 쌀 생산량 추정 모델의 구축이 필요하다. 본 연구의 목적은 (1) 쌀 생산량 추정을 위한 회선신경망 모델의 구축과, (2) 최고의 성능을 보이는 회선신경망의 파라미터를 결정하는 것과, (3) 인공신경망 모델과의 비교를 통해 회선신경망의 성능을 평가하는 것이다. 각 모델의 입력데이터로는 2000~2013년도의 4~9월까지에 해당하는 기상자료와 MODIS 위성자료를 사용하였으며, 정확도 평가를 위해 교차 검증을 실시하였다. 회선신경망과 인공신경망은 쌀 생산 표본점을 대상으로 각각 36.10kg/10a, 48.61kg/10a와 시군구 지역을 대상으로 각각 31.30kg/10a, 39.31kg/10a의 RMSE를 보였다. 회선신경망 모델은 인공신경망 모델보다 우수한 성능을 보였으며, 본 연구를 통해 쌀 생산량 추정 분야에 대한 회선신경망 모델의 적용 가능성을 확인할 수 있었다.

Keywords

References

  1. Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, G., and Yu, D. (2014), Convolutional neural networks for speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 22, No. 10, pp. 1533-1545. https://doi.org/10.1109/TASLP.2014.2339736
  2. Ahn, J., Hur, J., and Shim, K. (2010), A simulation of agro-climate index over the Korean peninsula using dynamical downscaling with a numerical weather prediction model, Korean Journal of Agricultural and Forest Meteorology, Vol. 12, No. 1, pp. 1-10. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.1.001
  3. Cressman, G. P. (1959), An operational objective analysis system, Mon. Wea. Rev, Vol. 87, No. 10, pp. 367-374. https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
  4. Fang, H., Liang, S., and Hoogenboom, G. (2011), Integration of MODIS LAI and vegetation index products with the CSM–CERES–Maize model for corn yield estimation, International Journal of Remote Sensing, Vol. 32, No. 4, pp. 1039-1065. https://doi.org/10.1080/01431160903505310
  5. Hong, S. Y., Hur, J., Ahn, J. B., Lee, J. M., Min, B. K., Lee, C. K., and Shim, K. M. (2012), Estimating rice yield using MODIS NDVI and meteorological data in Korea, Korean Journal of Remote Sensing, Vol. 28, No. 5, pp. 509-520. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2012.28.5.4
  6. Ji, B., Sun, Y., Yang, S., and Wan, J. (2007), Artificial neural networks for rice yield prediction in mountainous regions, The Journal of Agricultural Science, Vol. 145, No. 3, pp. 249-261. https://doi.org/10.1017/S0021859606006691
  7. Jiang, D., Yang, X., Clinton, N., and Wang, N. (2004), An artificial neural network model for estimating crop yields using remotely sensed information, International Journal of Remote Sensing, Vol. 25, No. 9, pp. 1723-1732. https://doi.org/10.1080/0143116031000150068
  8. Kang, L., Ye, P., Li, Y., and Doermann, D. (2014), Convolutional neural networks for no-reference image quality assessment, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733-1740.
  9. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014), Large-scale video classification with convolutional neural networks, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725-1732.
  10. Kaul, M., Hill, R. L., and Walthall, C. (2005), Artificial neural networks for corn and soybean yield prediction. Agricultural Systems, Vol. 85, No. 1, pp. 1-18. https://doi.org/10.1016/j.agsy.2004.07.009
  11. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012), Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, Vol. 25, pp. 1106-1114.
  12. Le Callet, P., Viard-Gaudin, C., and Barba, D. (2006), A convolutional neural network approach for objective video quality assessment, IEEE Transactions on Neural Networks, Vol. 17, No. 5, pp. 1316-1327. https://doi.org/10.1109/TNN.2006.879766
  13. LeCun, Y. and Bengio, Y. (1995), Convolutional networks for images, speech, and time series: The handbook of brain theory and neural networks, pp. 276-279.
  14. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998), Gradient-based learning applied to document recognition, Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324. https://doi.org/10.1109/5.726791
  15. Lee, K., Hong, S., Hur, J., Kim, Y., Ahn, J., Na, S., and Jang, S. (2013), Can satellite information estimate rice yield variability in Korea?, Agro-Geoinformatics (Agro-Geoinformatics), 2013 Second International Conference, IEEE, 12-16 August, Fairfax, VA, USA, pp. 429-432.
  16. Li, A., Liang, S., Wang, A., and Qin, J. (2007), Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques, Photogrammetric Engineering & Remote Sensing, Vol. 73, No. 10, pp. 1149-1157. https://doi.org/10.14358/PERS.73.10.1149
  17. Liu, F., Shen, C., and Lin, G. (2015), Deep convolutional neural fields for depth estimation from a single image, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5162-5170.
  18. Na, S. I., Hong, S. Y., Kim, Y. H., Lee, K. D., and Jang, S. Y. (2013), Prediction of Rice Yield in Korea using Paddy Rice NPP index-Application of MODIS data and CASA Model, Korean Journal of Remote Sensing, Vol. 29, No. 5, pp. 461-476. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2013.29.5.2
  19. Nuarsa, I. W., Nishio, F., and Hongo, C. (2011), Rice yield estimation using Landsat ETM+ data and field observation, Journal of Agricultural Science, Vol. 4, No. 3, pp. 45-56.
  20. Ravari, S. Z., Dehghani, H., and Naghavi, H. (2016), Assessment of salinity indices to identify Iranian wheat varieties using an artificial neural network, Annals of Applied Biology, Vol. 168, No. 2, pp. 185-194. https://doi.org/10.1111/aab.12254
  21. Sainath, T. N., Mohamed, A. R., Kingsbury, B., and Ramabhadran, B. (2013), Deep convolutional neural networks for LVCSR, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 26-31 May, Vancouver, Canada, pp. 8614-8618.
  22. Uno, Y., Prasher, S. O., Lacroix, R., Goel, P. K., Karimi, Y., Viau, A., and Patel, R. M. (2005), Artificial neural networks to predict corn yield from compact airborne spectrographic imager data, Computers and Electronics in Agriculture, Vol. 47, No. 2, pp. 149-161. https://doi.org/10.1016/j.compag.2004.11.014
  23. Ye, X., Sakai, K., Garciano, L. O., Asada, S. I., and Sasao, A. (2006), Estimation of citrus yield from airborne hyperspectral images using a neural network model, Ecological modelling, Vol. 198, No. 3, pp. 426-432. https://doi.org/10.1016/j.ecolmodel.2006.06.001

Cited by

  1. A Comparison Between Major Artificial Intelligence Models for Crop Yield Prediction: Case Study of the Midwestern United States, 2006-2015 vol.8, pp.5, 2016, https://doi.org/10.3390/ijgi8050240