Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.
Journal of Korean Society of Industrial and Systems Engineering
/
v.41
no.2
/
pp.9-15
/
2018
This study is intended to investigate that it is possible to analyze the public awareness and satisfaction of the weather forecast service provided by the Korea Meteorological Administration (KMA) through social media data as a way to overcome limitations of the questionnaire-based survey in the previous research. Sentiment analysis and association rule mining were used for Twitter data containing opinions about the weather forecast service. As a result of sentiment analysis, the frequency of negative opinions was very high, about 75%, relative to positive opinions because of the nature of public services. The detailed analysis shows that a large portion of users are dissatisfied with precipitation forecast and that it is needed to analyze the two kinds of error types of the precipitation forecast, namely, 'False alarm' and 'Miss' in more detail. Therefore, association rule mining was performed on negative tweets for each of these error types. As a result, it was found that a considerable number of complaints occurred when preventive actions were useless because the forecast predicting rain had a 'False alarm' error. In addition, this study found that people's dissatisfaction increased when they experienced inconveniences due to either unpredictable high winds and heavy rains in summer or severe cold in winter, which were missed by weather forecast. This study suggests that the analysis of social media data can provide detailed information about forecast users' opinion in almost real time, which is impossible through survey or interview.
Present weather plays an important role not only for atmospheric sciences but also for public welfare and road safety. While the widely used state-of-the-art visibility and present weather sensor yields present weather, a single type of measurement is far from perfect to replace long history of human-eye based observation. Truly automatic present weather observation enables us to increase spatial resolution by an order of magnitude with existing facilities in Korea. 8 years of human-eyed present weather records in 19 sites over Korea are compared with visibility sensors and auxiliary measurements, such as humidity of AWS. As clear condition agrees with high probability, next best categories follow fog, rain, snow, mist, haze and drizzle in comparison with human-eyed observation. Fog, mist and haze are often confused due to nature of machine sensing visibility. Such ambiguous weather conditions are improved with empirically induced criteria in combination with visibility and humidity. Differences between instrument manufacturers are also found indicating nonstandard present weather decision. Analysis shows manufacturer dependent present weather differences are induced by manufacturer's own algorithms, not by visibility measurement. Accuracies of present weather for haze, mist, and fog are all improved by 61.5%, 44.9%, and 26.9% respectively. The result shows that automatic present weather sensing is feasible for operational purpose with minimal human interactions if appropriate algorithm is applied. Further study is ongoing for impact of different sensing types between manufacturers for both visibility and present weather data.
The Transactions of The Korean Institute of Electrical Engineers
/
v.58
no.9
/
pp.1700-1705
/
2009
In general, short term load forecasting is based on the periodical load pattern during a day or a week. Therefore, the conventional methods do not expose stable performance to every day during a year. Especially for anomalous weather conditions such as typhoons, the methods have a tendency to show the conspicuous accuracy deterioration. Furthermore, the tendency raises the reliability and stability problems of the conventional load forecast. In this study, a new load forecasting method is proposed in order to increase the accuracy of the forecast result in case of anomalous weather conditions such as typhoons. For irregular weather conditions, the sensitivity between temperature and daily load is used to improve the accuracy of the load forecast. The proposed method was tested with the actual load profiles during 14 years, which shows that the suggested scheme considerably improves the accuracy of the load forecast results.
This paper is written for the purpose of obtaining the information about the weather easily by the development of weather forecast system sensing temperature, humidity, and atmospheric pressure as key information. For this, data is obtained from the Weather Bureau, and analyzed in order to set a standard of weather forecast from the collected data. The pressure sensor and temperature-humidity sensor are fabricated using the piezoresistive effect of semiconductor, which are used to collect data. The weather forecast system is made using microprocessor.
In this study, it was purposed to investigate that the student's understading and usage of weather information for the students of elementary, middle and high school The questionaire of 20 questions of 5 categories which included how to get weather information, the understanding of reason for variation of weather elements, the abilities of reading weather map, understanding of weather forecast and the necessity and usefulness of weather map and clouds pictures of weather satellite were prepared and 2 classes of elementary school 5th grade each one class of 2nd and 3rd grade of middle school and 2 classes of high school were tested. followings were revealed in this study; 1) Students of all school are fond of TV watching to get weather information as they used to. 2) They think air temperatures is the most important weather elements and then rainfall. 5ut they seems to unknown the reason why weather elements are vary. 3) They seems to have poor ability of reading weather symbols in weather map and the distribution of air pressure systems. 4) They can read and understand about the reports of words on weather forecast, but most of them can't make weather forecast by the reading of weather map. 5) More than half of students think that the weather map is helpful and especially the cloud pictures from weather satellite is useful for usage of weather information.
The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.
Park Sung-Joon;Kim Jae-In;Koo Myoung-Wan;Jhon Chu-Shik
MALSORI
/
no.51
/
pp.137-149
/
2004
A weather forecast service with speech recognition is described. This service allows users to get the weather information of all the cities by saying the city names with just one phone call, which was not provided in the previous weather forecast service. Speech recognition is implemented in the intelligent peripheral (IP) of the advanced intelligent network (AIN). The AIN is a telephone network architecture that separates service logic from switching equipment, allowing new services to be added without having to redesign switches to support new services. Experiments in speech recognition show that the recognition accuracy is 90.06% for the general users' speech database. For the laboratory members' speech database, the accuracies are 95.04% and 93.81%, respectively in simulation and in the test on the developed system.
Woo-Jin Lee;Rae-Seol Park;In-Hyuk Kwon;Junghan Kim
Atmosphere
/
v.33
no.2
/
pp.73-104
/
2023
Over the past 60 years, Korean numerical weather prediction (NWP) has advanced rapidly with the collaborative effort between the science community and the operational modelling center. With an improved scientific understanding and the growth of information technology infrastructure, Korea is able to provide reliable and seamless weather forecast service, which can predict beyond a 10 days period. The application of NWP has expanded to support decision making in weather-sensitive sectors of society, exploiting both storm-scale high-impact weather forecasts in a very short range, and sub-seasonal climate predictions in an extended range. This article gives an approximate chronological account of the NWP over three periods separated by breakpoints in 1990 and 2005, in terms of dynamical core, physics, data assimilation, operational system, and forecast application. Challenges for future development of NWP are briefly discussed.
This paper describes a web-based information system for plant disease forecast that was developed for crop growers in Gyeonggi-do, Korea. The system generates hourly or daily warnings at the spatial resolution of $240\;m{\times}240\;m$ based on weather data. The system consists of four components including weather data acquisition system, job process system, data storage system, and web service system. The spatial resolution of disease forecast is high enough to estimate daily or hourly infection risks of individual farms, so that farmers can use the forecast information practically in determining if and when fungicides are to be sprayed to control diseases. Currently, forecasting models for blast, sheath blight, and grain rot of rice, and scab and rust of pear are available for the system. As for the spatial interpolation of weather data, the interpolated temperature and relative humidity showed high accuracy as compared with the observed data at the same locations. However, the spatial interpolation of rainfall and leaf wetness events needs to be improved. For rice blast forecasting, 44.5% of infection warnings based on the observed weather data were correctly estimated when the disease forecast was made based on the interpolated weather data. The low accuracy in disease forecast based on the interpolated weather data was mainly due to the failure in estimating leaf wetness events.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.