• Title/Summary/Keyword: wearable 3D device

Search Result 25, Processing Time 0.024 seconds

Implementation of 3D Information Acquisition Device for Wearable U-Health (착용형 U-헬스용 3D 정보 입력장치 구현)

  • Kim, Yoon-Ho;Park, Ki-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.640-645
    • /
    • 2008
  • In progress to ubiquitous intelligent society, there are emerging technologies such smart wear related researches as wearable computer, smart fiber and smart fashion. In this paper, wearable 3D information acquisition device which improved both advanced in convenience and portable is implemented. 3D information input system is basically grouped of some modules; Gyro sensor for acquisition of 3D space coordinate, RF transmitter/receiver, and signal processing module etc. To testify the validity of designed system, some experiments are performed using lest board with respect to the communication distance, easiness of wearable and operation sensibility.

  • PDF

Band Type Wearable Device's RF Configuration and Bent Microstrip Patch Antenna (밴드형 Wearable Device의 RF Configuration과 Bent 마이크로스트립 패치 안테나)

  • Lee, Dongho;Choi, Woo Cheol;Kim, Sung Hoe;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • In this paper, a bent microstrip patch antenna, which is suitable for band-type wearable devices and RF configuration, to be used in the WCDMA2100 mobile network is proposed. The proposed antenna using RF configuration which is consisted of separated Tx and Rx frequency band is designed to operate or function in WCDMA2100 Tx frequency band only and it is not strongly affected by the human body because of the conductor at the bottom side. At both flat case and bent case, the proposed antenna's maximum gain satisfies at least 5.3 dBi, and its -6 dB return loss bandwidth is wider than 20 MHz. The simulated surface absorption rate($SAR_{1g}$) result is under 0.7 [W/kg]. The proposed antenna suits in band-type wearable devices which is worn on wrists or arms.

3D-Porous Structured Piezoelectric Strain Sensors Based on PVDF Nanocomposites (PVDF 나노 복합체 기반 3차원 다공성 압전 응력 센서)

  • Kim, Jeong Hyeon;Kim, Hyunseung;Jeong, Chang Kyu;Lee, Han Eol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.307-311
    • /
    • 2022
  • With the development of Internet of Things (IoT) technologies, numerous people worldwide connect with various electronic devices via Human-Machine Interfaces (HMIs). Considering that HMIs are a new concept of dynamic interactions, wearable electronics have been highlighted owing to their lightweight, flexibility, stretchability, and attachability. In particular, wearable strain sensors have been applied to a multitude of practical applications (e.g., fitness and healthcare) by conformally attaching such devices to the human skin. However, the stretchable elastomer in a wearable sensor has an intrinsic stretching limitation; therefore, structural advances of wearable sensors are required to develop practical applications of wearable sensors. In this study, we demonstrated a 3-dimensional (3D), porous, and piezoelectric strain sensor for sensing body movements. More specifically, the device was fabricated by mixing polydimethylsiloxane (PDMS) and polyvinylidene fluoride nanoparticles (PVDF NPs) as the matrix and piezoelectric materials of the strain sensor. The porous structure of the strain sensor was formed by a sugar cube-based 3D template. Additionally, mixing methods of PVDF piezoelectric NPs were optimized to enhance the device sensitivity. Finally, it is verified that the developed strain sensor could be directly attached onto the finger joint to sense its movements.

User Authentication Using Accelerometer Sensor in Wrist-Type Wearable Device (손목 착용형 웨어러블 기기의 가속도 센서를 사용한 사용자 인증)

  • Kim, Yong Kwang;Moon, Jong Sub
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • This paper proposes a method of user authentication through the patterns of arm movement with a wrist-type wearable device. Using the accelerometer sensor which is built in the device, the 3-axis accelerometer data are collected. Then, the collected data are integrated and the periodic cycle are extracted. In the cycle, the features of frequency are generated with the accelerometer. With the frequency features, 2D Gaussian mixture are modelled. For authenticating an user, the data(the accelerometer) of the user at some point are tested with confidence interval of the Gaussian distribution. The model showed a valuable results for the user authentication with an example, which is average 92% accuracy with 95% confidence interval.

Research on Silicon Nanowire Transistors for Future Wearable Electronic Systems (차세대 웨어러블 전자시스템용 실리콘 나노선 트랜지스터 연구)

  • Im, Kyeungmin;Kim, Minsuk;Kim, Yoonjoong;Lim, Doohyeok;Kim, Sangsig
    • Vacuum Magazine
    • /
    • v.3 no.3
    • /
    • pp.15-18
    • /
    • 2016
  • In future wearable electronic systems, 3-dimensional (3D) devices have attracted much attention due to their high density integration and low-power functionality. Among 3D devices, gate-all-around (GAA) nanowire transistor provides superior gate controllability, resulting in suppressing short channel effect and other drawbacks in 2D metal-oxide-semiconductor field-effect transistor (MOSFET). Silicon nanowires (SiNWs) are the most promising building block for GAA structure device due to their compatibility with the current Si-based ultra large scale integration (ULSI) technology. Moreover, the theoretical limit for subthreshold swing (SS) of MOSFET is 60 mV/dec at room temperature, which causes the increase in Ioff current. To overcome theoretical limit for the SS, it is crucial that research into new types of device concepts should be performed. In our present studies, we have experimentally demonstrated feedback FET (FBFET) and tunnel FET (TFET) with sub-60 mV/dec based on SiNWs. Also, we fabricated SiNW based complementary TFET (c-TFET) and SiNW complementary metal-oxide-semiconductor (CMOS) inverter. Our research demonstrates the promising potential of SiNW electronic devices for future wearable electronic systems.

A Study on the Controller Design of 3D Printed Robot Hand using TPU Material (TPU 소재를 이용한 3D 프린팅 로봇 손의 제어기 설계에 관한 연구)

  • Young-Rim Choi;Ye-Eun Park;Jong-Wook Kim;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.2
    • /
    • pp.312-327
    • /
    • 2024
  • In this study, a rehabilitation 3D printed wearable device was developed by combining an assembly-type robot hand and an integral-type robot hand through fused deposition 3D printing manufacturing with various hardness TPU (Thermoplastic Polyurethane) filaments. The hardware configuration of the robot hand includes a controller designed with four motors, one small servo motor, and a circuit board. In the case of the assembly-type robot hand model, a 3D printed robot hand was assembled using samples printed with TPU of hardness 87A and 95A. It was observed that TPU with a hardness of 95A was suitable for use due to shape stability. For the integrated-type robot hand model, the external sample using TPU of hardness 95A could be modified through a cutting method, and the hardware configuration is the same as the assembly-type. The system structure of the 3D printed robot hand was improved from an individual control method to a simultaneous transmission method.Furthermore, the system architecture of an integrated 3D printed robotic hand rehabilitation device and the application of the rehabilitation device were developed.

An ECG monitoring system using a conductive thread-based wearable antenna (전도성 섬유 웨어러블 안테나를 기반으로 한 심전도 모니터링 시스템 설계)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.10-15
    • /
    • 2017
  • Research interest has strongly focused on developing a method for effectively transmitting bio-signals over a distance using a wireless wearable device. In this paper, we describe a procedure for the design and fabrication of a wearable antenna based on embroidering conductive threads to clothing capable of transmitting electrocardiogram signals. 3D electromagnetic simulation software and embroidery software were used to design and fabricate the conductive thread-based antenna, respectively. The measurement results show that the reflection coefficient of the fabricated antenna prototype exhibits excellent antenna impedance matching characteristics of less than -10dB in the Zigbee 2.4GHz frequency band. We also verified that the electrocardiogram data could be effectively received and monitored in real-time by a receiver 220m away from the transmitter.

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.

Augmented System for Immersive 3D Expansion and Interaction

  • Yang, Ungyeon;Kim, Nam-Gyu;Kim, Ki-Hong
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.149-158
    • /
    • 2016
  • In the field of augmented reality technologies, commercial optical see-through-type wearable displays have difficulty providing immersive visual experiences, because users perceive different depths between virtual views on display surfaces and see-through views to the real world. Many cases of augmented reality applications have adopted eyeglasses-type displays (EGDs) for visualizing simple 2D information, or video see-through-type displays for minimizing virtual- and real-scene mismatch errors. In this paper, we introduce an innovative optical see-through-type wearable display hardware, called an EGD. In contrast to common head-mounted displays, which are intended for a wide field of view, our EGD provides more comfortable visual feedback at close range. Users of an EGD device can accurately manipulate close-range virtual objects and expand their view to distant real environments. To verify the feasibility of the EGD technology, subject-based experiments and analysis are performed. The analysis results and EGD-related application examples show that EGD is useful for visually expanding immersive 3D augmented environments consisting of multiple displays.

1D CNN and Machine Learning Methods for Fall Detection (1D CNN과 기계 학습을 사용한 낙상 검출)

  • Kim, Inkyung;Kim, Daehee;Noh, Song;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • In this paper, fall detection using individual wearable devices for older people is considered. To design a low-cost wearable device for reliable fall detection, we present a comprehensive analysis of two representative models. One is a machine learning model composed of a decision tree, random forest, and Support Vector Machine(SVM). The other is a deep learning model relying on a one-dimensional(1D) Convolutional Neural Network(CNN). By considering data segmentation, preprocessing, and feature extraction methods applied to the input data, we also evaluate the considered models' validity. Simulation results verify the efficacy of the deep learning model showing improved overall performance.