• Title/Summary/Keyword: wear prediction model

Search Result 89, Processing Time 0.023 seconds

A Study on Life Estimation of a Forging Die (단조 금형의 수명 평가에 관한 연구)

  • Choi, C.H.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

A Study on Prediction of Die Life of Warm Forging by Wear(I) -Construction of Die Wear Model- (마멸에 의한 온간단조의 금형수명 예측에 관한 연구(I) -금형 마멸 모델의 정립-)

  • 강종훈;박인우;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.88-93
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In warm forging processes wear is the predominant factor for operating lives of tools. To predict tool life by wear, Archard's wear model is generally applied. Usually hardness of die is considered to be a function of temperature in Archard's wear model. But hardness of die is a function of not only temperature but also operating time of die. To consider softening of die by repeated operations, it is necessary to express hardness of dies by a function of temperatures and operating time. By experiment of reheating of dies, die softening curves were obtained. Finally modified Archard's wear model in which hardness of die was expressed as a function of main tempering curve was proposed.

  • PDF

Measurement of Wear and Friction Coefficients for the Prediction of Fretting Wear (프레팅 마멸계수 및 마찰계수 측정에 관한 연구)

  • Cho, Yong Joo;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.124-129
    • /
    • 2012
  • The prediction of fretting wear is a significant issue for the design of contacting mechanical components such as flexible couplings and splines, jointed structures and so on. In our earlier study, we developed a numerical model to predict the fretting wear using boundary element method. The developed algorithm needs experimental fretting wear coefficients and friction coefficients between two moving materials to get more reliable results. In this study, therefore, we demonstrated the measurement method of the fretting wear coefficients and friction coefficients using disk on plate tribometer with piazo actuator and gap sensor. For four different material combinations, the fretting wear coefficients and friction coefficients are acquired through the fretting wear experiment and the analysis of the measured values. Thess results are useful to predict the quantative fretting wear rate in the developed algorithm.

Real-Time Prediction of Electrode Wear for the Small Hole Pass-Through by EDM-drill (방전 드릴을 이용한 미세 홀 관통 공정의 전극 소모량 실시간 예측)

  • Choi, Yong-Chan;Huh, Eun-Young;Kim, Jong-Min;Lee, Cheol-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.268-274
    • /
    • 2013
  • Electric discharge machining drill (EDM-drill) is an efficient process for the fabrication of micro-diameter deep metal hole. As there is non-physical contact between tool (electrode) and workpiece, EDM-drill is widely used to machine the hard machining materials such as high strength steel, cemented carbide, titanium alloys. The electro-thermal energy forces the electrode to wear out together with the workpiece to be machined. The electrode wear occurs inside of a machining hole. and It causes hard to monitor the machining state, which leads the productivity and the quality to decrease. Thus, this study presents a methodology to estimated the electrode wear amount while two coefficients (scale factor and shape factor) of the logarithmic regression model are evaluated from the experiment result. To increase the accuracy of estimation model, the linear transformation method is adopted using the differences of initial electrode wear differences. The estimation model is verified through experiment. The experimental result shows that within minute error, the estimation model is able to predict accurately.

A Study on Die Wear Model considering Thermal Softening(II) -Application of Suggested Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(II) -마멸모델의 적용)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.282-290
    • /
    • 1998
  • In bulk metal forming processes prediction of tool life is very important for saving production cost and achieving good material properties. Generally the service life of tools in metal forming process is limited to a large extent by wear, fracture and plastic deformation of tools. In case of hot and warm forging processes tool life depends on wear over 70%. In this study finite element analyses are con-ducted to warm and hot forging by adopting suggested wear model. By comparison of simulation and eal profile of die suggested wear model. By comparison of simulation and real profile of die suggested model is verified.

  • PDF

Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process (Roll 수명예측모델에 의한 열연작업롤 진단)

  • Bae, Yong-Hwan;Jang, Sam-Kyu;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF

Cutting Force Prediction in End Milling of STS 304 Considering Tool Wear (STS 304 엔드밀 가공시 공구마멸을 고려한 절삭력 예측)

  • Kim, Tae-Young;Jeong, Eun-Cheol;Shin, Hyung-Gon;Oh, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.46-53
    • /
    • 1999
  • Cutting force characteristics is closely related with tool wear on the end milling. And it is found that the tool wear can be properly obtained by observation through the tool-maker's microscope when STS 304 is cut using an end mill. The relationship between the tool wear and the cutting force is established based on data obtained from a series of experiments. A cutting force model can be derived from basic cutting force model using parasitic force components of this tool wear. The results of th simulation using the cutting force model proposed in this paper were verified experimentally and a good agreement was partly obtained. The proposed model is capable of predicting increased cutting force due to tool wear.

  • PDF

A Comparative Study on Eigen-Wear Analysis and Numerical Analysis using Algorithm for Adaptive Meshing (마모해석을 위한 고유치해석과 Adaptive Meshing 알고리듬을 이용한 수치해석 비교)

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • Herein, we present a numerical investigation of wear analysis of sliding systems with a constant speed subjected to Archard's wear law. For this investigation, we compared two methods: eigen-wear analysis and adaptive meshing technique. The eigen-wear analysis is advantageous to predict the evolution of contact pressure due to wear using the initial contact pressure and contact stiffness. The adaptive meshing technique in finite element analysis is employed to obtain transient wear behavior, which needs significant computational resources. From the eigen-wear analysis, we can determine the appropriate element size required for finite element analysis and the time increment required for wear evolution by a dimensionless variable above a certain value. Since the prediction of wear depends on the maximum contact pressure, the finite element model should have a reasonable representation of the maximum contact pressure. The maximum contact pressure and wear amount according to this dimensionless variable shows that the number of fine meshes in the contact area contributes more to the accuracy of the wear analysis, and the time increment is less sensitive when the number of contact nodes is significantly larger. The results derived from a two-dimensional wear model can be applied to a three-dimensional wear model.

Prediction of Die Wear in Extrusion and Wire Drawing (축대칭 압출 및 인발공정 중의 금형마멸예측)

  • Kim, Tae-Hyeong;Kim, Byeong-Min;Choi, Jae-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3031-3037
    • /
    • 1996
  • In cold forming processes, due to high working pressure action on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures into devlop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the forming propcesses that involve cold forward extrusion and wire drawing were simulated by rigid plastic finite element method and its output were used for predicting die wear by Archard wear model. The simulation results were compared with the measured worn dies.

Lateral Crack in Abrasive Wear of Brittle Solids (취성소재 연삭마멸에서의 측면균열에 관한 연구)

  • 안유민;박상신;최상현
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.46-51
    • /
    • 1999
  • An analytical model about lateral crack occurring in abrasive wear of brittle solids is developed. Stress field around the lateral crack and stress intensity factor at the crack tip are analytically modeled. Abrasive wear by abrasive particle is experimentally studied. In soda-lime glass, it is observed that chipping by lateral crack occurs and produces the greatest material removal when normal load applied by the abrasive particle is about 1.5∼3.0 N. The prediction of lateral crack length from the model is compared with the experimentally measured length in soda-lime glass.