• Title/Summary/Keyword: wear particle

Search Result 278, Processing Time 0.023 seconds

Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray (플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성)

  • Min Joon-Won;Yoo Seung-Eul;Kim Young-Jung;Suhr Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

Characterization of Wear Resistance of Particle Reinforced Al Matrix Composite Manufactured by Centrifugal Spray Casting (분사주조한 Al기지 입자강화 복합재료의 마모특성)

  • Bae, Cha-Hurn;Choi, Hak-Kyu;Bang, Kuk-Soo
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.108-114
    • /
    • 2004
  • $Al_2O_3$, SiC reinforced Al matrix composites were fabricated by centrifugal spray casting method and their wear resistance characteristics have been studied. Particles are generally uniformly distributed in the microstructure of as-cast specimens. In order to investigate the effect of secondary deformation, hot rolling was performed for each specimen of pure Al matrix composites with a reduction of 10, 20, 30, 40 and 50% at $400{\sim}500^{\circ}C$, respectively. Microstructure of specimen showed that particle distribution density and hardness increased because of increasing of reduction ratio. Wear test with a various sliding velocity of 1.98, 2.38, 2.88 and 3.53m/sec showed that the wear resistance characterization of composite improved remarkably compared to the normal alloy and performs without reinforced particles. Microstructural observation for the worn surface of pure Al specimens without particles showed that a change in wear mechanism seemed to separate layer by surface fatigue. In other case of Al composite reinforced with $Al_2O_3$ and SiC, the grinder type of wear mechanism was shown.

Effects of Reinforcements Type on Mechanical Properties of Metal Matrix Composites (보강재의 형태와 종류가 금속복합재료의 기계적 물성에 미치는 영향 연구)

  • 남현욱;조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.79-82
    • /
    • 2001
  • In this research, tile effects of reinforcements type on mechanical properties of MMCs were studied. Six kinds preform were fabricated by using Saffil short fiber, HTZ short fiber, $Al_2O_3$ particle, and SiC particle. MMCs were fabricated by using squeeze casting methods. Various tests were conducted to show the effects of reinforcements type on mechanical properties of MMCs. Tensile and compressive properties of MMCs depend on short fiber, however wear properties depend on particle reinforcement. Generally, properties of fiber/particle hybrid MMCs were excellent than those of MMCs with short fiber.

  • PDF

Tribological Properties of Reaction-Bonded SiC/Graphite Composite According to Particle Size of Graphite (반응소결 SiC/Graphite 복합체에서 Graphite 입자의 크기에 따른 마찰마모특성)

  • Baik, Yong-Hyuck;Seo, Young-Hean;Choi, Woong;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.854-860
    • /
    • 1997
  • The tribological property of ceramics is very important for use in seal rings, pump parts, thread guides and mechanical seal, etc. In the present study, which RBSC/graphite composites were manufactured by adding graphite powders with different particle sizes to mixtures of SiC powder, metallic silicon, carbon black and alumina, effects on the tribological property of each RBSC/graphite composite was investigated in accordance with the particle size of the added graphite powder. The water absorption, the bending strength and the resistance for the friction and wear were measured, and the crystalline phase and the microstructure were respectively examined by using XRD and SEM. In case that the particle size of the graphite powder was fine(2${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was accelerated, thereby making the increase of the bending strength and the decrease of the water absorption, but no improvement for the tribological properties. Furthermore, in case that the particle size of the graphite powder was some large(88~149${\mu}{\textrm}{m}$), the formation of $\beta$-SiC was not accelerated, to thereby make the decrease of the bending strength and the increase of the water absorption, but the improvement for the tribological property of only the composite having the graphite powder of 20 vol%. In addition, in case that the particle size distribution of the graphite powder was large (under 53 ${\mu}{\textrm}{m}$), there was no improvement for every properties. However, the composites, which the graphite powder with the particle size of 53~88 ${\mu}{\textrm}{m}$ was added in 10~15 vol%, had the most increased resistance for the friction and wear which show the worn out amount of 0.4~0.6$\times$10-3 $\textrm{cm}^2$, and the value of the bending strength is 380~520 kg/$\textrm{cm}^2$.

  • PDF

The Tensile Properties and Wear Behavior of Mixing-reinforced Composites by Squeeze Casting Process (혼합강화 복합재료의 인장 및 내마모 특성)

  • Kim, Yong-Hyeon;Lee, Gwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.392-397
    • /
    • 1999
  • The tensile strength and water resistance of ADC12 alloy matrix composites reinforced with saffil/ceraklwool and saffil/Si particle prepared by squeeze casting have been investigated in room temperature and $250^{\circ}C$. Adhesive and scuffing wear phenomena was studied when load was changed to 10~40N and wear velocity was 2.0m/s at room temperature and $250^{\circ}C$. Generally, the morphology of tensile fractured surface revealed dimple pattern which implies ductile fracture of the composites. However, cleavage fracture was also observed in case of ADC12 alloy based saffil/Si particle composite. The maximum tensile strength of 320MPa was obtained in ADC12 alloy based composites reinforced by saffil/cerakwool(5:5) preformed fibers. In the results of dry wear test, it was observed that scuffing was occurred at 40N in room temperature and 30N for $250^{\circ}C$.

  • PDF

An Experimental Study on the Effect of Wear Particles on the Sliding Behavior of Silver-Coated Bearing Steels (은 박막이 코팅된 베어링강의 마찰거동에 미치는 마모입자의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.59-66
    • /
    • 2000
  • An experimental study on the effect of silver particles on the sliding behavior of bearing steels was performed by using a ball-on-disk tribometer. Tests were carried out in ambient air, dry and vacuum. Disks of AISI 52100 were silver-coaled by a thermal evaporation method, and the effects of silver particle transfer on friction were firstly analyzed. In order to understand further the mechanism of silver particles transfer and its effect on friction and wear, pre-compressed silver particles were artificially introduced into the friction interface and the results were compared to those of silver-coated specimens. Results showed that the introduced silver particles produced transfer layers and resulted in low friction. It also showed that this low friction is closely related to the characteristic behavior of transfer layers. Shakedown and rachetting occurred at the friction interface and affected the friction and wear.

  • PDF

Study on Inhomogeneity in Compositions of Asphalt Pavement Wear Particles Using Thermogravimetric Analysis

  • Uiyeong Jung;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • Asphalt pavements are generally composed of fine and coarse aggregates, bitumen, and modifier. Asphalt pavement wear particles (APWPs) are produced by friction between the road surface and the tire tread, and they flow into the environment such as rivers and oceans. Model APWPs were prepared and a single APWP of 212-500 (S-APWP) and 500-1000 ㎛ (L-APWP) was analyzed using thermogravimetric analysis (TGA) to investigate inhomogeneity in the compositions of the APWPs. The reference TGA thermogram was built using thermograms of the raw materials and formulation of the model asphalt pavement. The compositions of the APWPs were different from each other. Ash contents of the APWPs were lower than expected. Inhomogeneity in the total contents of bitumen and modifier was more severe than that in the other components. The inhomogeneity of the S-APWPs was more severe than that of the L-APWPs.

Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite (용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질)

  • Kim, Min-Soo;Cho, Kyung-Mox;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

Influence of Dicyclopentadiene Resin on Abrasion Behavior of Silica-Filled SBR Compounds Using Different Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Seok Hyun Cho;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • The abrasion resistances of silica-filled styrene-butadiene rubber (SBR) compounds prepared with and without dicyclopentadiene resin (SBR-R and SBR-0, respectively) were studied using four different abrasion testers, namely cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The effect of the resin on the abrasion behavior was elucidated by analyzing the morphologies and size distributions of wear particles. All the wear particles had rough surfaces, but those obtained in the Lambourn abrasion test exhibited relatively smooth surfaces. The size distributions of the wear particles showed different trends depending on the abrasion tester and the rubber compound; however, most of the wear particles were larger than 1000 ㎛. The SBR-R sample showed a wide range of particle sizes (from 63 ㎛) in the LAT100 abrasion test and majority of the wear particles were 500-1000 ㎛, whereas the SBR-0 sample had the most distribution of larger than 1000 ㎛. The abrasion rates of SBR-0 sample were lower than those of the SBR-R sample for the CC and LAT100 abrasion tests, but the Lambourn abrasion test result showed the opposite trend. Addition of the resin influenced the abrasion behavior, however the effect varied depending on the type of abrasion tests.

Morphological Analysis of Wear Particles in the Lubricating Oil with Additives (유성제 및 극압 첨가제에 따른 마멸입자 형상해석)

  • 이충엽;조연상;서영백;박흥식;전태옥
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.79-87
    • /
    • 1998
  • Morphological analysis of wear particles in the lubricating oil is a very effective and versatile means of lubricant analysis for machine condition monitoring and fault diagnosis. The prospects for determining quantitative information about wear particle morphology have been considerably enhanced by recent developments reported in the application of image processing and analysis techniques. This study was undertaken to investigate the influence of oiliness agent and extreme pressure agent on the shape of wear particles. The wear test was performed under different experimental conditions with stearic acid, dibenzyl disulfide(DBDS) and tricresol phosphate(TCP) in paraffinic base oil. Wear particles characteristics were described using four shape parameters, namely 50% volumetric diameter, aspect, roundness and reflectivity. The results showed that the four shape parameters of wear particles depend on a kind of the additives. This analysis of wear debris with computer image processing techniques is sufficient to distinguish some types of wear debris. The wear volume of three kinds of the specimens are affected by the additives with boundary films.