DOI QR코드

DOI QR Code

Influence of Dicyclopentadiene Resin on Abrasion Behavior of Silica-Filled SBR Compounds Using Different Abrasion Testers

  • Received : 2023.08.24
  • Accepted : 2023.09.06
  • Published : 2023.09.30

Abstract

The abrasion resistances of silica-filled styrene-butadiene rubber (SBR) compounds prepared with and without dicyclopentadiene resin (SBR-R and SBR-0, respectively) were studied using four different abrasion testers, namely cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The effect of the resin on the abrasion behavior was elucidated by analyzing the morphologies and size distributions of wear particles. All the wear particles had rough surfaces, but those obtained in the Lambourn abrasion test exhibited relatively smooth surfaces. The size distributions of the wear particles showed different trends depending on the abrasion tester and the rubber compound; however, most of the wear particles were larger than 1000 ㎛. The SBR-R sample showed a wide range of particle sizes (from 63 ㎛) in the LAT100 abrasion test and majority of the wear particles were 500-1000 ㎛, whereas the SBR-0 sample had the most distribution of larger than 1000 ㎛. The abrasion rates of SBR-0 sample were lower than those of the SBR-R sample for the CC and LAT100 abrasion tests, but the Lambourn abrasion test result showed the opposite trend. Addition of the resin influenced the abrasion behavior, however the effect varied depending on the type of abrasion tests.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy, Republic of Korea (Project Number 20010851).

References

  1. R. Stocek, G. Heinrich, R. Kipscholl, and O. Kratina, "Cut & chip wear of rubbers in a range from low up to high severity conditions", Appl. Surf. Sci. Adv., 6, 100152 (2021). 
  2. M. Scherbakov and M. R. Gurvich, "Cut & chip wear of rubbers in a range from low up to high severity conditions", Appl. Surf. Sci. Adv., 6, 100152 (2021). 
  3. J. R. Beatty and B. J. Miksch, "A laboratory cutting and chipping tester for evaluating off-the road and heavy-duty tire treads", Rubber Chem. Technol., 55, 1531 (1982). 
  4. J.-H. Ma, Y.-X. Wang, L.-Q. Zhang, and Y.-P. Wu, "Improvement of cutting and chipping resistance of carbon black-filled styrene butadiene rubber by addition of nanodispersed clay", J. Appl. Polym. Sci., 125, 3484 (2012). 
  5. C. Nah, B. W. Jo, and S. Kaang, "Cut and chip resistance of NR-BR blend compounds", J. Appl. Polym. Sci., 68, 1537 (1998). 
  6. R. Stocek, W. V. Mars, C. G. Robertson, and R. Kipscholl, "Characterizing rubber's resistance against chip and cut behavior", Rubber World, 257, 38 (2018). 
  7. K. Elangovan, F. X. Josephraj, A. K. Murugesan, and B. Pandian, "Effect of crosslink density on cut and chip resistance of 100% SBR based tire tread compound", Mater. Plast., 58, 34 (2021). 
  8. H. Kim and I. Jeon, "Wear and frictional behavior of tire rubber", Polym. Sci. Technol., 11, 592 (2000). 
  9. J. H. Go and C. Nah, "Wear of rubber for tire", Polym. Sci. Technol., 6, 348 (1995). 
  10. A. E. Juve and A. G Veith, "Abrasion-reinforcement: methods of evaluation", Rubber Chem. Technol., 35, 1276 (1962). 
  11. ASTM D5963, "Standard Test Method for Rubber Property - Abrasion Resistance (Rotary Drum Abrader)". 
  12. ISO 4649, "Rubber, vulcanized, or thermoplastic - Determination of abrasion resistance using a rotating cylindrical drum device". 
  13. M. Scherbakov and M. R. Gurvich, "A method of wear characterization under cut, chip and chunk conditions", J. Elastom. Plast., 35, 73 (2003). 
  14. M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, W. K. Dierkes, and A. Blume, "Measuring rubber friction using a Laboratory Abrasion Tester (LAT100) to predict car tire dry ABS braking", Tribol. Int., 131, 191 (2019). 
  15. M. Salehi, J. W. M. Noordermeer, L. A. E. M. Reuvekamp, T. Tolpekina, and A. Blume, "A new horizon for evaluating tire grip within a laboratory environment", Tribol. Lett., 68, 1 (2020). 
  16. M. Heinz and K. A. Grosch, "A laboratory method to comprehensively evaluate abrasion, traction and rolling resistance of tire tread compounds", Rubber Chem. Technol., 80, 580 (2007). 
  17. K. A. Grosch, "Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data", Rubber Chem. Technol., 77, 791 (2004). 
  18. M. Heinz, "A universal method to predict wet traction behaviour of tire tread compounds in the laboratory", J. Rubber Res., 13, 91 (2010). 
  19. K. A. Grosch, "Rubber abrasion and tire wear", Rubber Chem. Technol., 81, 470 (2008). 
  20. R. Stocek, W. V. Mars, R. Kipscholl, and C. G. Robertson, "Characterisation of cut and chip behaviour for NR, SBR and BR compounds with an instrumented laboratory device", Plast. Rubber Compos., 48, 14 (2019). 
  21. S. Ahmad, Z. S. Lee, and S. E. Katrenick, "Cutting and chipping resistant tread for heavy service pneumatic off-the-road tires", US4703079 (1987). 
  22. T. Grigoratos, M. Gustafsson, O. Eriksson, and G. Martini, "Experimental investigation of tread wear and particle emission from tyres with different treadwear marking", Atmos. Environ., 182, 200 (2018). 
  23. Y. Fukahori and H. Yamazaki, "Mechanism of rubber abrasion. Part I: Abrasion pattern formation in natural rubber vulcanizate", Wear, 171, 195 (1994). 
  24. Y. Fukahori and H. Yamazaki, "Mechanism of rubber abrasion. Part II: General rule in abrasion pattern formation in materials", Wear, 178, 109 (1994). 
  25. T. Nishi, "Rubber wear mechanism discussion based on the relationship between the wear resistance and the tear resistance with consideration of the strain rate effect", Wear, 426-427, 37 (2019). 
  26. E. Chae, S. R. Yang, and S.-S. Choi, "Test method for abrasion behavior of tire tread compounds using the wear particles", Polym. Test., 115, 107758 (2022). 
  27. M. Lolage, P. Parida, M. Chaskar, A. Gupta, and D. Rautaray, "Green silica: Industrially scalable & sustainable approach towards achieving improved "nano filler-Elastomer" interaction and reinforcement in tire tread compounds", Sustain. Mater. Technol., 26, e00232 (2020). 
  28. A. A. Hassan, K. Formela, and S. Wang, "Enhanced interfacial and mechanical performance of styrene-butadiene rubber/silica composites compatibilized by soybean oil derived silanized plasticization", Compos. Sci. Technol., 197, 108271 (2020). 
  29. J. W. van Hoek, G. Heideman, J. W. M. Noordermeer, W. K. Dierkes, and A. Blume, "Implications of the use of silica as active filler in passenger car tire compounds on their recycling options", Materials, 12, 725 (2019). 
  30. B. Shee, J. Chanda, M. Dasgupta, A. K. Sen, S. K. Bhattacharyya, S. D. Gupta, and R. Mukhopadhyay, "A study on hydrocarbon resins as an advanced material for performance enhancement of radial passenger tyre tread compound", J. Appl. Polym. Sci., 139, 51950 (2022). 
  31. P. Bernal-Ortega, E. Gaillard, F. Elburg, and A. Blume, "Use of hydrocarbon resins as an alternative TDAE oil in tire tread compounds", Polym. Test., 126, 108168 (2023). 
  32. Y. M. Yun, J. H. Lee, M. C. Choi, J. W. Kim, H. M. Kang, and J. W. Bae, "A study on the effect of petroleum resin on vibration damping characteristics of natural rubber composites", Elast. Compos., 56, 201 (2021). 
  33. Y. S. Kwon, "Effects of hydrocarbon resin on performance properties of tire tread compounds", Hanyang University Master thesis, 2023. 
  34. Indriasari, J. Noordermeer, and W. Dierkes, "Incorporation of oligomeric hydrocarbon resins for improving the properties of aircraft tire retreads", Appl. Sci., 11, 9834 (2021). 
  35. M. J. Zohuriaan-Mehr and H. Omidian, "Petroleum resins an overview", J. Macromol. Sci., 40, 23 (2000). 
  36. B. Berahman, B. Dabir, and S. Sadeghpour, "Simulation of the C5 aliphatic petroleum resins production process", Petrol. Sci. Technol., 28, 1277 (2010). 
  37. H.-C. Hsu, S.-J. Wang, J. D.-Y. Ou, and D. S. H. Wong, "Simplification and intensification of a C5 separation process", Ind. Eng. Chem. Res., 54, 9798 (2015). 
  38. L. Guo, T. Wang, D. Li, and J. Wang, "Liquid-holdup regions research of novel reactive distillation column for C5 fraction separation", Chinese J. Chem. Eng., 25, 433 (2017). 
  39. D. Su, X. Chen, X. Wei, J. Liang, L. Tang, and L. Wang, "Comparison of thermal stability between dicyclopentadiene/hydrogenated dicyclopentadiene petroleum resin: thermal decomposition characteristics, kinetics and evolved gas analysis by TGA/TG-MS", Thermochim. Acta, 699, 178853 (2021). 
  40. A. Mess, J.-P. Vietzke, C. Rapp, and W. Francke, "Qualitative analysis of tackifier resins in pressure sensitive adhesives using direct analysis in real time time-of-flight mass spectrometry", Anal. Chem., 83, 7323 (2011). 
  41. D. D. Andjelkovic and R. C. Larock, "Novel rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization", Biomacromolecules, 7, 927 (2006). 
  42. M. Wismer and P. Prucnal, "Ethylene-diolefin hydrocarbon resins for polymer coating", Ind. E ng. Chem. Prod. Res. Develop., 10, 279 (1971). 
  43. S.-S. Choi, H.-M. Kwon, Y. Kim, J. W. Bae, and J.-S. Kim, "Characterization of maleic anhydride-grafted ethylene-propylene-diene terpolymer (MAH-g-EPDM) based thermoplastic elastomers by formation of zinc ionomer", J. Ind. Eng. Chem., 19, 1990 (2013). 
  44. S.-S. Choi and J.-C. Kim, "Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes", J. Ind. Eng. Chem., 18, 1166 (2012). 
  45. S.-S. Choi and D.-H. Han, "Strain effect on recovery behaviors from circular deformation of natural rubber vulcanizate", J. Appl. Polym. Sci., 114, 935 (2009). 
  46. P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950). 
  47. X. Zhang, X. Xue, Q. Yin, H. Jia, J. Wang, Q. Ji, and Z. Xu, "Enhanced compatibility and mechanical properties of carboxylated acrylonitrile butadiene rubber/styrene butadiene rubber by using graphene oxide as reinforcing filler", Compos B: Eng., 111, 243 (2017).