• 제목/요약/키워드: wear coefficient

검색결과 780건 처리시간 0.024초

마찰재에 따른 휠굴삭기용 습식 다판 디스크 브레이크의 제동특성 (Braking Characteristics of Wet-type Multiple Disc Brakes on Friction Materials)

  • 배명호;조연상
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.381-386
    • /
    • 2009
  • In general, a brake system of axle for heavy duty machine as a wheel excavator makes use of wettype multiple disk brakes. These disk bakes are very important parts of heavy duty machine because they are dvanced in durability and braking power, and can be designed compactly. Thus, we adesigned and made wettype multiple disk brakes of axle for the wheel excavator to be localization of these imported all. In this study, wet multiple disk brakes were made a comparative test with the 3 types materials of friction disk by the SAE No.2 dynamometer. The friction characteristics were measured and analyzed to decide a suitable material as wear depth of friction disk and dynamic and static friction coefficient on temperature of oil and applied pressure.

모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널베어링의 마모 해석 - Part II: 경사진 축을 지지하는 두 저어널베어링의 마모해석 (Wear Analysis of Journal Bearings Operating in a Shaft During Motoring Start-up and Coast-down Cycles - Part II: Wear Analysis of two Journal Bearings Supporting a Misaligned Shaft)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.168-186
    • /
    • 2017
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings during the start-up and coast-down cycles of a motoring stripped-down single cylinder engine operating with a tilted shaft. In order to decide whether the lubrication state of a journal bearing is in the mixed-elasto-hydrodynamic lubrication regime, we utilize lift-off speed and MOFT (most oil film thickness) under mixed-elasto-hydrodynamic lubrication regime at the corresponding aligned shaft. We formulate an equation for the modified film thickness in a misaligned journal bearing considering the additional wear volume described in Part I of this study. For this, we use the calculation results of the degree of misalignment and tilting angle obtained after finding the eccentricities of the two bearings supporting the crankshaft of a single cylinder engine. In this Part II, we calculate the wear of journal bearings using the fractional film defect coefficient, the asperity load sharing factor, and the modified specific wear rate for the application of mixed-elasto-hydrodynamic lubrication regime. We show that the accumulated wear volume after turning the ignition switch on and off once, increases to ${\sigma}=39{\mu}m$ and then decreases from ${\sigma}=39{\mu}m$ with increasing in surface roughness.

탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구 (A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone)

  • 류성국;김경웅
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.930-937
    • /
    • 2001
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

STD 61 공구강과 상대재인 핫 프레스 가공용 Al-9%Si 코팅강의 고온 미끄럼 마모 (High Temperature Wear of STD 61 Tool Steels Sliding Against Al-9%Si Coated Steels Used for Hot Press Forming)

  • 최병영;김홍기
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.667-674
    • /
    • 2009
  • High temperature wear of STD 61 tool steels sliding against the Al-9%Si coated steels used for hot press forming has been studied in comparison with that of the tool steels sliding against the uncoated steels. Wear tests have been performed using a pin-on-disc configuration under an applied normal load of 50N for 20 min with heating the coated and uncoated steels up to 800$^{\circ}C$. It was found on the worn surface of the STD 61 tool steels sliding against the Al-9%Si coated steels that the formation of the glazed layers containing Al transferred from the coated tribopair may contribute to a reduction of the coefficient of friction, and detachment in part occur due to delamination wear, resulting in higher specific wear rate. On the other hand the Fe-oxide wear debris entrapped on the softer surface of the uncoated steels can act as a tribosurface, leading to decreased adhesive wear of the STD 61 tool steels, resulting in a lower specific wear rate.

Ti6Al4V 판재의 초소성 성형공정에서 Inconel 600 금형 마모 평가 (Evaluation of Wear in Inconel 600 Tools in Superplastic Forming of Ti6Al4V Sheet)

  • 방준호;송정한;김민기
    • 소성∙가공
    • /
    • 제33권2호
    • /
    • pp.112-117
    • /
    • 2024
  • In this study, the friction and wear characteristics of Inconel 600 in the superplastic forming process of Ti6Al4V were evaluated through pin-on-disc tests. To achieve an efficient and systematic experimental design, the Taguchi method was employed. The wear track of the Inconel 600 pin showed scratches in the sliding contact direction, confirming that the wear mechanism is abrasive wear. Through sensitivity analysis such as ANOVA and Main effects, it was confirmed that both normal force and sliding distance have a significant impact on the wear. Changes in sliding velocity and distance did not affect the friction coefficient, which remained relatively constant at approximately 0.380. The wear prediction model for Inconel 600 in the superplastic forming of Ti6Al4V was constructed, which can be utilized as a guideline for the prediction and management of tool wear.

상압소결 탄화규소 소결체의 마찰마모특성 (Tribological Properties of Pressureless-sinteed Silicon Carbide)

  • 백용혁;최웅;서영현;박용갑
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.721-725
    • /
    • 1998
  • 본 연구에서는 Boron과 Carbon black이 소결조재로 첨가된 탄화규소 분말을 $1950^{\circ}C$에서 상압소결 방법으로 시편을 제조하고 꺽임강도, 파괴인성, 비마모량을 측정하고 파단면 및 마찰마모면의 미세구조를 SEM으로 관찰하여 마찰마모특성과 미세구조와의 관계를 규명하였다. 또한 마모상대재료로서 SiC pin과 $Al_{2}O_{3}$ pin을 사용하였을때 마찰마모특성과 미세구조와의 관계도 비교 검토하였으며 다음과 같은 결론을 얻었다. 1. SiC pin을 사용한 경우 소결시편의 비마모량은 $Al_{2}O_{3}$ pin을 사용한 경우보다 많았으나, 가압하중이 증가하면 $Al_{2}O_{3}$ pin을 사용한 경우가 SiC pin을 사용한 경우보다 비마모량의 증가율이 6.5배로 되었다. 2. Pin의 비마모량은 SiC pin의 경우가 $Al_{2}O_{3}$의 경우보다 많았으나 가압하중이 증가하면 $Al_{2}O_{3}$ pin의 경우가 SiC pin의 경우보다 비마모향의 증가율이 약4배로 되었다. 3. 마모상대재료의 마찰계수가 작은 경우에는 마모면의 미세구조가 평활하면서 crack이 나타나지 않았으나, 마찰계수가 큰 경우에는 마모면이 평활치 못하고 crack의 전파현상이 크게 나타났다. 4. 사용된 Pin의 마찰계수가 큰 경우에는 고상소결한 SiC 시편도 액상소결한 시편과 마찰마모 특성이 유사하였다.

  • PDF

나노입자를 적용한 냉장고 압축기용 오일의 윤활특성 평가 (Performance Evaluation of Nano-Lubricants at Refrigeration Oil)

  • 이광호;황유진;권래언;이재근;김석로;방선욱
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.184-188
    • /
    • 2008
  • It has been recognized that friction coefficient decreased with decreasing viscosity of oil in lubrication. In general, the more viscosity decreases, the more wear rate increases due to decrease load carrying capacity. It has been proposed that nano particles in oil decrease friction coefficient and wear rate. The purpose of this study is to apply oil of lower viscosity that mix with nano particles at the compressor used in a refrigerator to decrease friction coefficient keeping Load carrying capacity. Mineral oil of 8 cSt were used and mixed with nano particle. Friction coefficient was evaluated by a disk-on-disk tester. As a result, friction coefficient of nano oil decreased by 90% in comparison with raw oil. These results lead us to the conclusion that nano oil is new plan to raise efficiency of the compressor.

  • PDF

모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과 (Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제31권3호
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

TiN 코팅층 집합조직의 변화에 따른 마찰, 마멸과 내부식 특성 (The Characteristics of Frictional Behavior, Wear and Corrosion Resistance of Textured TiN Coated Layer)

  • 김희동;김인수;성동영;이민구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.99-104
    • /
    • 2003
  • TiN coated films show a good mechanical properties, high thermal properties and wear, erosion and corrosion resistance and are widely used as a coating materials in tools, ornaments, parts and semiconductors. In spite of these good properties, the fracture of TiN coated films occur during use. The fracture of TiN thin films is related to their microstructure. Especially, the life of TiN coated layer is related to the texture of the TiN films. One researcher suggested that the corrosion and erosion resistance of the TiN thin films is related to a uniform and dense structure of films. In this study, we studied the relationships between textures and friction coefficient, erosion and corrosion in TiN coated films. The flatness of (115) texture surface of TiN thin films is flatter than that of (111) texture surface. The friction coefficient of (115) texture surface of TiN thin films is similar with that of (111) texture surface. The wear resistance of (115) texture surface of TiN thin films is better than that of (111) texture surface. The erosion and corrosion resistance of (115) texture surface of TiN thin films is better than that of (111) torture surface. As well as texture, the wear, erosion and corrosion of TiN thin films has to consider defects such as pinholes, cracks, surface roughness and open columnar structure. The life of TiN coated products is influenced by the properties of wear, erosion, and corrosion resistance of TiN thin films and is related to texture of TiN coated films, density of pinholes and cracks, density of structure, and surface flatness.

  • PDF

가스 분무 공정에 의해 제조된 Al-Si 합금 분말 압출재의 열처리에 의한 미세조직 및 기계적 특성 변화 (Effect of Heat Treatment on the Microstructure and Mechanical Properties for Al-Si Alloyed Powder Material by Gas Atomizing and Hot Extrusion Process)

  • 남기영;진형호;김용진;윤석영;박용호
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.421-426
    • /
    • 2006
  • The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to $8{\mu}m$. The hot extruded Al-Si alloy shows the average Si particle size of less than $1{\mu}m$. After heat-treatment, the average particle size was increased from 2 to $5{\mu}m$. Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.