• Title/Summary/Keyword: wear and friction

Search Result 1,226, Processing Time 0.024 seconds

Influence of Disk Mass with regard to Frictional Characteristics of Brake Disk for Rolling Stock (디스크 질량 변화에 따른 철도차량용 제동디스크의 마찰 특성)

  • Jung, Jong Rok;Ko, Eun Sung;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.240-245
    • /
    • 2014
  • Low alloy heat resistant brake disk and sintered brake pad are applied to mechanical brake system for the speed-up of urban rapid transit. In this research, we analyzed how the frictional characteristics between brake disk and pad are influenced by the disk mass. At a high disk mass, the friction stability was the lower value as a result of the lack of tribofilm formation at the disk surface. Wear rates of friction materials showed the higher value at a low disk mass and wear rates of 10 mm and 15 mm showed the similar level. Average friction coefficient was the lower value at the 10 mm disk thickness and range of variation of average friction coefficient was also the smaller value at the 10 mm disk thickness. However, there were no significant changes in the friction coefficients under any of test conditions. Surface roughness of a disk showed the highest value at the 5 mm disk and surface roughnesses of 10 mm and 15 mm showed the similar level. As a result, friction characteristics of disk mass influenced the friction stability, as well as the wear rate of friction pad and disk, but not the friction coefficient.

Study on Improvement of Lubrication Characteristics for the Material of Compressor Friction Parts with Nano-oil (나노 오일을 이용한 압축기 습동부 재질의 윤활 특성 향상에 관한 연구)

  • Kim, Sung-Choon;Kim, Kyong-Min;Hwang, Yu-Jin;Park, Young-Do;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.559-563
    • /
    • 2009
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester for measuring friction surface temperature and the coefficient of friction. The average friction coefficient of nano-oil was reduced by 60% compared to raw oil under 600 N and 1,000 rpm. It is believed that the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were also investigated by the optical and atomic force microscopy. Conclusively, it is expected that wear and friction coefficient of compressor can be reduced by alignment applying nano-oil as refrigerant oil.

Friction and Wear Characteristics of Friction Material from Scrap Tire and Potassium Hexatitanate (폐타이어분말과 육티탄산칼륨를 이용한 마찰재의 마찰.마모 특성)

  • Park, Jong-Il;Kang, Dong-Heon;Kang, Suck-Choon;Chung, Chan-Kyo;Chung, Kyung-Ho;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.3-13
    • /
    • 2001
  • To resolve environmental problem of waste tire and asbestos and also to capitalize the wastes, we developed a new kind of friction material using scrap tire, potassium hexatitanate, filler, and friction modifier in which rubber made a continuous phase. The material containing 5, 20, 10, 20phr of potassium hexatitanate, phenol, friction modifier, $BaSO_4$, respectively showed good friction properties, high and stable coefficient or friction, and low wear rate.

  • PDF

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Application Study of Magneto-Rheological Elastomer to Friction Control (자기유변탄성체의 마찰제어적용 연구)

  • Lian, Chenglong;Lee, Deuk-Won;Lee, Kwang-Hee;Lee, Chul-Hee;Kim, Cheol-Hyun;Cho, Won-Oh
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.107-111
    • /
    • 2012
  • In this study, application feasibility of Magneto-rheological elastomer to friction control is investigated to identify the reciprocating friction and wear performance in applied magnetic field. Friction and wear of MR elastomerare measured by reciprocating tester by controlling the magnetic field. In the case of applied magnetic field, the coefficient of friction increases as both load and velocity increase. For the case of no magnetic field, the value of coefficient of friction hardly changes during the test. The amount of destruction is measured through cross section images of MR elastomer after tests. The depths of destruction are compared for MR elastomer with or without magnetic field. The results show that the depth of destruction of MR elastomer with magnetic field is deeper than without magnetic field. Based on the obtained results, optimal braking and driving performance can be achieved by controlling the coefficient of friction of MR elastomer, which can be applied to various industrial applications such as driving systems of automobiles and robots.

Experimental Determination of Friction Characteristics for Advanced High Strength Steel Sheets (초고강도강판 마찰특성의 실험적 규명)

  • Kim, N.J.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • The friction coefficients of advanced high strength steel sheets were experimentally determined. In the friction test, the pulling and holding forces acting on the sheet for various friction conditions, such as lubricant viscosity, pulling speed, blank holding pressure, sheet surface roughness, and hardness of the sheet were measured and the friction coefficient was calculated based on Coulomb's friction law. While the friction coefficient, generally, decreases as the value of friction factor increases, the factor associated with the sheet surface roughness shows U shape behavior for the friction coefficient. Furthermore, the relationship between friction coefficient and the wear volume, which was computed for the roughness of both sheet surfaces and the friction area, is linearly proportional.

Effect of Stress History on Friction and Wear of Metals in Dry and Boundary Lubricated Conditions (건조 및 경계윤활 조건에서 응력이력에 따른 금속재료의 마찰 마멸 특성)

  • 황동환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.93-98
    • /
    • 1996
  • Friction and wear characteristics of metals in dry and boundary lubricated sliding conditions are observed experimentally using pin-on-disk and pin-on-plate type tribotesters. The motivation of this research is to investigate the effect of sliding history on the tribological behavior of metals. Cu and SM45C steel materials were used for the experiment. The results show that in dry condition the fictional behavior as well as wear of the specimens differed between uni-directional and bi-directional sliding conditions. The friction coefficient values, wear profile and optical micrograph of the wear track are presented.

  • PDF

A test for friction and wear characteristic of brake disk materials (제동디스크 소재의 마찰-마모특성 시험)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1761-1765
    • /
    • 2008
  • In the braking of a railroad car, mechanical brake systems using wheel tread and brake disk are applied as well as electrical brake systems by regenerator and rheostat. It is very important to consider the frictional characteristic because kinetic energy of the vehicle is dissipated as converted thermal energy through friction between disk and brake pad during disk braking. A friction coefficient and wear characteristic are decided from the interrelationship of disk and friction material in the disk brake system. Lab-scale dynamometer test on developed brake disk materials for increasing heat resistance was performed in this study. Each candidate material was tested at various braking speeds and pressures and we obtained the friction coefficient and wear characteristic. And we executed comparative evaluation of the result from the test.

  • PDF

Tribological Characteristics of MoS$_2$ Coatings in High Vacuum (고진공하에서의 $MoS_2$ 코팅의 트라이볼로지적 특성)

  • 권오원;김석삼;이상로
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.409-414
    • /
    • 2000
  • The friction and wear behaviors of MoS$_2$ coatings were investigated by using a pin and disk type tester. The experiment was conducted by using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding velocities in the range of 22-66 ㎜/sec, normal loads varying from 9.8 N to 29.4 N, corresponding to maximum contact pressures of 1.18-2.83 GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

Tribological Characteristics of $MoS_2$Coatings in High Vacuum (고진공하에서의 MoS$MoS_2$코팅의 트라이볼로지적 특성)

  • 권오원;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.94-100
    • /
    • 1999
  • The friction and wear behavior of MoS$_2$Coatings were investigated using a pin and disk type tester. The experiment was conducted using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding speeds in the range of 22~66mm/sec, normal loads varying from 9.8~29.4N, corresponding to maximum contact pressure of 1.78~2.830GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified when running in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

  • PDF