• Title/Summary/Keyword: weakly (m, n)-closed ideal

Search Result 5, Processing Time 0.019 seconds

WEAKLY (m, n)-CLOSED IDEALS AND (m, n)-VON NEUMANN REGULAR RINGS

  • Anderson, David F.;Badawi, Ayman;Fahid, Brahim
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1031-1043
    • /
    • 2018
  • Let R be a commutative ring with $1{\neq}0$, I a proper ideal of R, and m and n positive integers. In this paper, we define I to be a weakly (m, n)-closed ideal if $0{\neq}x^m\;{\in}I$ for $x{\in}R$ implies $x^n{\in}I$, and R to be an (m, n)-von Neumann regular ring if for every $x{\in}R$, there is an $r{\in}R$ such that $x^mr=x^n$. A number of results concerning weakly(m, n)-closed ideals and (m, n)-von Neumann regular rings are given.

ON WEAKLY (m, n)-PRIME IDEALS OF COMMUTATIVE RINGS

  • Hani A. Khashan;Ece Yetkin Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.717-734
    • /
    • 2024
  • Let R be a commutative ring with identity and m, n be positive integers. In this paper, we introduce the class of weakly (m, n)-prime ideals generalizing (m, n)-prime and weakly (m, n)-closed ideals. A proper ideal I of R is called weakly (m, n)-prime if for a, b ∈ R, 0 ≠ amb ∈ I implies either an ∈ I or b ∈ I. We justify several properties and characterizations of weakly (m, n)-prime ideals with many supporting examples. Furthermore, we investigate weakly (m, n)-prime ideals under various contexts of constructions such as direct products, localizations and homomorphic images. Finally, we discuss the behaviour of this class of ideals in idealization and amalgamated rings.

(m, n)-CLOSED δ-PRIMARY IDEALS IN AMALGAMATION

  • Mohammad Hamoda;Mohammed Issoual
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.575-583
    • /
    • 2024
  • Let R be a commutative ring with 1 ≠ 0. Let Id(R) be the set of all ideals of R and let δ : Id(R) → Id(R) be a function. Then δ is called an expansion function of the ideals of R if whenever L, I, J are ideals of R with J ⊆ I, then L ⊆ δ (L) and δ (J) ⊆ δ (I). Let δ be an expansion function of the ideals of R and m ≥ n > 0 be positive integers. Then a proper ideal I of R is called an (m, n)-closed δ-primary ideal (resp., weakly (m, n)-closed δ-primary ideal ) if am ∈ I for some a ∈ R implies an ∈ δ(I) (resp., if 0 ≠ am ∈ I for some a ∈ R implies an ∈ δ(I)). Let f : A → B be a ring homomorphism and let J be an ideal of B. This paper investigates the concept of (m, n)-closed δ-primary ideals in the amalgamation of A with B along J with respect to f denoted by A ⋈f J.

WEAKLY DENSE IDEALS IN PRIVALOV SPACES OF HOLOMORPHIC FUNCTIONS

  • Mestrovic, Romeo;Pavicevic, Zarko
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-420
    • /
    • 2011
  • In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.