• Title/Summary/Keyword: waypoint

Search Result 97, Processing Time 0.023 seconds

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Temporal Waypoint Revision Method to Solve Path Mismatch Problem of Hierarchical Integrated Path Planning for Mobile Vehicle (이동 차량의 계층적 통합 경로 계획의 경로 부조화 문제 해결을 위한 임시 경유점 수정법)

  • Lee, Joon-Woo;Seok, Joon-Hong;Ha, Jung-Su;Lee, Ju-Jang;Lee, Ho-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.664-668
    • /
    • 2012
  • Hierarchical IPP (Integrated Path Planning) combining the GPP (Global Path Planner) and the LPP (Local Path Planner) is interesting the researches who study about the mobile vehicle in recent years. However, in this study, there is the path mismatch problem caused by the difference in the map information available to both path planners. If ever a part of the path that was found by the GPP is available to mobile vehicle, the part may be unavailable when the mobile vehicle generates the local path with its built-in sensors while the vehicle moves. This paper proposed the TWR (Temporal Waypoint Reviser) to solve the path mismatch problem of the hierarchical IPP. The results of simulation provide the performance of the IPP with the TWR by comparing with other path planners.

Path Planning for Autonomous Navigation of a Driverless Ground Vehicle Based on Waypoints (무인운전차량의 자율주행을 위한 경로점 기반 경로계획)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.211-217
    • /
    • 2014
  • This paper addresses an algorithm of path planning for autonomous driving of a ground vehicle in waypoint navigation. The proposed algorithm is flexible in utilization under a large GPS positioning error and generates collision-free multiple paths while pursuing minimum traveling time. An optimal path reduces inefficient steering by minimizing lateral changes in generated waypoints along a path. Simulation results compare the proposed algorithm with the A* algorithm by manipulation of the steering wheel and traveling time, and show that the proposed algorithm realizes real-time obstacle avoidance by quick processing of path generation, and minimum time traveling by producing paths with small lateral changes while overcoming the very irregular positioning error from the GPS.

Waypoint Planning Algorithm Using Cost Functions for Surveillance

  • Lim, Seung-Han;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.136-144
    • /
    • 2010
  • This paper presents an algorithm for planning waypoints for the operation of a surveillance mission using cooperative unmanned aerial vehicles (UAVs) in a given map. This algorithm is rather simple and intuitive; therefore, this algorithm is easily applied to actual scenarios as well as easily handled by operators. It is assumed that UAVs do not possess complete information about targets; therefore, kinematics, intelligence, and so forth of the targets are not considered when the algorithm is in operation. This assumption is reasonable since the algorithm is solely focused on a surveillance mission. Various parameters are introduced to make the algorithm flexible and adjustable. They are related to various cost functions, which is the main idea of this algorithm. These cost functions consist of certainty of map, waypoints of co-worker UAVs, their own current positions, and a level of interest. Each cost function is formed by simple and intuitive equations, and features are handled using the aforementioned parameters.

Fixed-wing Aircraft Course Control in Significant Wind (강한 바람조건에서의 고정익 항공기 코스제어 기법)

  • Lee, Hongju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.408-415
    • /
    • 2019
  • Basically the dynamics of the fixed-wing aircraft is based on the airspeed which is relative to the wind, but when it comes to the track guidance and control, ground speed is the factor to be considered. Especially in the case of low-speed fixed-wing unmanned aerial vehicles the difference between the airspeed and the ground speed is significant depending on wind conditions, so that the heading control and the course control have to be designed separately. This paper represents the course control method using the pre-designed heading control gains which meet the desired characteristics. Also, waypoint guidance and control algorithms are suggested applying this control method. Finally the robustness of the proposed method is confirmed by 6-DoF nonlinear simulation.

A design of UAV Simulation model for waypoint optimization method (웨이포인트 최적화 방법에 대한 UAV 시물레이션 모델의 디자인)

  • Niyonsaba, Eric;Jang, JongWook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • In recent years, Unmanned Aerial Vehicles (UAV) have been developed for both military and civilian activities in regions where the presence of onboard human pilots is risky or not necessary. However, UAV require a high demand of power to achieve its missions such as taking images/videos in a certain area or surveillance activities. Therefore, this situation triggers the need of techniques to reduce power consumption for UAV to complete its mission safely. One of the methods is to use a waypoint optimization procedure which deals with a pre-specified set of waypoints to find a minimum route to fly through those waypoints in order to reduce power consumption. In this paper, due to the UAV's multidisciplinary which makes it impossible to be represented as an analytical model, we design a simulation model of UAV using MATLAB Simulink and AeroSim Blockset, an analysis package in aerospace industry. The simulation model is then coupled with optimization algorithms along with a set of waypoints (flight path) in order to measure at which percentage power consumption can be minimized for UAV.

  • PDF

Development of AUV's Waypoint Guidance Law and Verification by HILS (무인잠수정의 경로점 유도 법칙 설계 및 HILS 검증)

  • Hwang, Jong-Hyon;Yoo, Tae-Suk;Han, Yongsu;Kim, Hyun Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1417-1423
    • /
    • 2020
  • This paper proposes a waypoint guidance algorithm for the Autonomous Underwater Vehicle(AUV). The proposed simplified guidance algorithm is presented, which is combined LOS guidance and cross-track guidance for path following. Cross-track error is calculated using the position of the AUV and reference path. LOS guidance and cross-track guidance are appropriately changed according to cross-track error. And the stability of the system has been improved using variable cross-track control gain by cross-track error. Also, in this paper, navigation hardware in-the loop simulation(HILS) is implemented to verify navigation algorithm of AUV that performs combined navigation using inertial navigation device and doppler velocity log(DVL). Finally, we design integrated system HILS (including navigation HILS) for performance verification of guidance algorithm of the autonomous underwater vehicle. By comparing the sea test result with HILS result, the proposed guidance algorithm and HILS configuration were confirmed be correct.

A Study on Precision Positioning Methods for Autonomous Mobile Robots Using VRS Network-RTK GNSS Module (VRS 네트워크-RTK GNSS 모듈을 이용한 자율 이동 로봇의 정밀 측위방법에 관한 연구)

  • Dong Eon Kim;YUN-JAE CHOUNG;Dong Seog Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.3
    • /
    • pp.1-13
    • /
    • 2024
  • This paper proposes a cost-effective system design and user-friendly approach for the key technological elements necessary to configure an autonomous mobile robot. To implement a high-precision positioning system using an autonomous mobile robot, we established a Linux-based VRS (virtual reference station)-RTK (real-time kinematic) GNSS (global navigation satellite system) system with NTRIP (Network Transport of RTCM via Internet Protocol) client functionality. Notably, we reduced the construction cost of the GNSS positioning system by performing dynamic location analysis of the established system, without utilizing an RTK replay system. Dynamic location analysis involves sampling each point during the trajectory following of the autonomous mobile robot and comparing the location precision with ground-truth points. The proposed system ensures high positioning performance with fast sampling times and suggests a GPS waypoint system for user convenience. The centimeter-level precision GNSS information is provided at a 30Hz sampling rate, and the dead reckoning function ensures valid information even when passing through tall buildings and dense forests. The horizontal position error measured through the proposed system is 6.7cm, demonstrating a highly precise dynamic location measurement error within 10cm. The VRS network-RTK Linux system, which provides precise dynamic location information at a high sampling rate, supports a GPS waypoint planner function for user convenience, enabling easy destination setting based on GPS information.