• Title/Summary/Keyword: wavelet shrinkage

Search Result 39, Processing Time 0.028 seconds

Wavelet based Image Reconstruction specific to Noisy X-ray Projections (잡음이 있는 X선 프로젝션에 적합한 웨이블렛 기반 영상재구성)

  • Lee, Nam-Yong;Moon, Jong-Ik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.169-177
    • /
    • 2006
  • In this paper, we present an efficient image reconstruction method which is suited to remove various noise generated from measurement using X-ray attenuation. To be specific, we present a wavelet method to efficiently remove ring artifacts, which are caused by inevitable mechanical error in X-ray emitters and detectors. and streak artifacts, which are caused by general observation errors and Fourier transform-based reconstruction process. To remove ring artifacts related noise from projections, we suggest to estimate the noise intensity by using the fact that the noise related to ring artifacts has a strong correlation in the angle direction, and remove them by using wavelet shrinkage. We also suggest to use wavelet-vaguelette decomposition for general-purpose noise removal and image reconstruction. Through simulation studies. we show that the proposed method provides a better result in ring artifact removal and image reconstruction over the traditional Fourier transform-based methods.

  • PDF

Iterative Image Restoration Based on Wavelets for De-Noising and De-Ringing (잡음과 오류제거를 위한 웨이블렛기반 반복적 영상복원)

  • Lee Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.271-280
    • /
    • 2004
  • This paper presents a new iterative image restoration algorithm with removal of boundary/object-oriented ringing, The proposed method is based on CGM(Conjugate Gradient Method) iterations with inter-wavelet shrinkage. The proposed method provides a fast restoration as much as CGM, while having adaptive do-noising and do-ringing by using wavelet shrinkage. In order to have effective do-noising and do-ringing simultaneously, the proposed method uses a space-dependent shrinkage rule. The improved performance of the proposed method over more traditional iterative image restoration algorithms such as LR(Lucy-Richardson) and CGM in do-noising and do-ringing is shown through numerical experiments.

  • PDF

Hybrid Noise Reduction Algorithm Using Wavelet Transform (웨이블릿 변환을 이용한 하이브리드 방식의 잡음 제거 알고리즘)

  • Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.367-368
    • /
    • 2007
  • In this paper, we propose a new de-noising algorithm for 2 dimensional image using discrete wavelet transform. The proposed algorithm consists of edge detection in spatial domain, zero-tree estimation, subband estimation, and shrinkage algorithm. The results from it shows that the denoised image which Is damaged by 20% gaussian noise has 28dB quality for the original one.

  • PDF

A New Method for Selecting Thresholding on Wavelet Packet Denoising for Speech Enhancement

  • Kim, I-jae;Kim, Hyoung-soo;Koh, Kwang-hyun;Yang, Sung-il;Y. Kwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.25-29
    • /
    • 2001
  • In this paper, we propose a new method for selecting the threshold on wavelet packet denoising. In selecting threshold, the method using median is not efficient. Because this method can not recover unvoiced signal corrupted by noise. So we partition a speech signal corrupted by noise into the pure noise section and voiced section using autocorrelation and entropy. The autocorrelation and entropy can reflect disorder of noise. The new method yields more improved denoising effect. Especially unvoiced signal is very nicely reconstructed, and SNR is improved.

  • PDF

POCS Based Interpolation Method for Irregularly Sampled Image (불규칙한 샘플 영상에 대한 POCS 기반 보간법)

  • Lee, Jong-Hwa;Lee, Chul-Hee
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.669-679
    • /
    • 2011
  • In this paper, we propose a POCS based irregularly sampled image interpolation method exploiting non-local block-based wavelet shrinkage denoising algorithm. The method provides convex sets to improve the performance. The Delaunay triangulation interpolation is first applied to interpolate the missing pixels of the irregularly sampled image into the regular grids. Then, the non-local block-based wavelet shrinkage denoising algorithm is applied, and the originally observed pixels are enforced. After iteration is performed, the denoising algorithm for non-edge areas is applied to acquire the final result. The experimental results show that the proposed method outperforms the conventional methods.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Denoising of Infrared Images by an Adaptive Threshold Method in the Wavelet Transformed Domain (웨이브렛 변환 영역에서 적응문턱값을 이용한 적외선영상의 잡음제거)

  • Cho, Chang-Ho;Lee, Sang-Hyo;Lee, Jong-Yong;Cho, Do-Hyeon;Lee, Sang-Chuel
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.65-75
    • /
    • 2006
  • This thesis deals with a wavelet-based method of denoising of infrared images contaminated with impulse noise and Gaussian noise, he method of thresholding the wavelet coefficients using derivatives and median absolute deviations of the wavelet coefficients of the detail subbands was proposed to effectively denoise infrared images with noises. Particularly, in order to eliminate the impulse noise the method of generating binary masks indicating locations of the impulse noise was selected. By this method, the threshold values dividing edges and noises were obtained more effectively proving the validity of the denoising method compared with the conventional wavelet shrinkage method.

A REVIEW ON DENOISING

  • Jung, Yoon Mo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2014
  • This paper aims to give a quick view on denoising without comprehensive details. Denoising can be understood as removing unwanted parts in signals and images. Noise incorporates intrinsic random fluctuations in the data. Since noise is ubiquitous, denoising methods and models are diverse. Starting from what noise means, we briefly discuss a denoising model as maximum a posteriori estimation and relate it with a variational form or energy model. After that we present a few major branches in image and signal processing; filtering, shrinkage or thresholding, regularization and data adapted methods, although it may not be a general way of classifying denoising methods.

Multiscale features and information extraction of online strain for long-span bridges

  • Wu, Baijian;Li, Zhaoxia;Chan, Tommy H.T.;Wang, Ying
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.679-697
    • /
    • 2014
  • The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of $10^5$, $10^2$ and $10^0$ sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of $10^{-2}$, $10^{-1}$ and $10^0$ Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.