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ABSTRACT. This paper aims to give a quick view on denoising without comprehensive details.
Denoising can be understood as removing unwanted parts in signals and images. Noise incor-
porates intrinsic random fluctuations in the data. Since noise is ubiquitous, denoising methods
and models are diverse. Starting from what noise means, we briefly discuss a denoising model
as maximum a posteriori estimation and relate it with a variational form or energy model. After
that we present a few major branches in image and signal processing; filtering, shrinkage or
thresholding, regularization and data adapted methods, although it may not be a general way of
classifying denoising methods.

1. INTRODUCTION

In a broad sense, denoising is removing noise which may be unwanted parts in signals,
images, measurements, data, and so on. Imaging or data acquisition devices, including di-
verse modalities from daily-life devices such as cellular phones and digital cameras to medical
imaging devices such as CT and MRI output noisy measurements of incoming signals. Noise
incorporates intrinsic random fluctuations in the data. Fundamentally, noise is ubiquitous.
Usually an elementary denoising process is already installed in the device itself and further
operations can be proceeded as post-process if the quality of the acquisition or reconstruction
is not satisfactory.

Through various disciplines, tremendous techniques are developed and under developing;
typing denoising related keywords in Google will show numerous articles in this topic. Some
methods are very problem specific, since they exploit a given specific situation or incorporate
physical and engineering circumstances. A general technique or principle such as total vari-
ation [20] and soft thresholding [9] still can improve the quality of results. However, finding
a universal method which outperforms in overall cases is hopeless; there is no panacea at all,
since the scope of denoising is too wide and diverse. Even if one narrows the focus, only on
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specific sounds or images for example, they contain various situations as if zooming in fractals
shows recurrent intricacies.

Although a unified theory might be a daydream of mathematician, developing common
mathematical foundations and frameworks is still worthwhile to pursuit. Such efforts lead to
speculating proper spaces for signals and images such as BV space and Besov space, or finding
a best or sparse representation using wavelets and some orthonormal bases or a dictionary by
learning.

This paper gives a short review on denoising and by no means do we intend to give a com-
prehensive review on it. Denoising belongs to applied science and engineering and the primal
matter of concern in denoising is practicability. Theory should come in the second. Deng Xi-
aoping said that “It doesn’t matter whether a cat is white or black, as long as it catches mice.”
The same tenet may go to denoising. Thus, classifying existing methods in a few categories
might not be proper. We illustrate a few tracks of them in this paper and some important
methods could be missing or misclassified by author’s carelessness or ignorance.

Here is the organization of the paper; we start from what noise means in Section 2. In
Section 3, we briefly discuss a denoising model as maximum a posteriori estimation and relate
it with a variational form or energy model. Also we discuss some probabilistic foundations
and measures of denoising quality are given. After that we present a few major branches
in image and signal denoising; filtering in Section 4, shrinkage or thresholding in Section 5,
regularization in Section 6 and data adapted techniques in Section 7, although it may not be
a general way of classifying denoising methods. Since those methods are usually devised for
images and signals, we discuss those methods assuming the given data is an image or signal.
But their applications are not limited to those fields and there are also many mutations for other
fields. We close this review by giving a brief remark in Section 8.

2. WHAT IS NOISE?

Often a denoising paper starts in this fashion: “From the observation uo, we want to restore
u under the assumption uo = u + n where n is a Gaussian white noise.” Since it is already
a well-established problem, possibly no more insight or explanation is necessary to justify
the importance and soundness of the problem. Thus, researchers often add random numbers
generated by a computer to whatever they already have, signals and images, for examples,
and just enjoy games how the computed ũ is close to u which they originally have. The term
‘Gaussian’ has mathematical definition; it is the most popular distribution in the probability
theory. Then how about ‘noise’ or ‘white’?

From this standpoint, we’d like to discuss noise first, before we discuss de-noising; before
we want to remove ‘something’, we should understand what ‘something’ is. Merriam-Webster
dictionary defines it as ‘a loud or unpleasant sound’ and ‘unwanted electronic signals that harm
the quality of something’. The first definition is subjective or psychological but the second
one looks objective or scientific. Wikipedia does similarly; it starts with the sentence, “Noise
means any unwanted sound.” to define noise. However, ‘Noise (electronics)’ starts with that “In
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electronics, noise is a random fluctuation in an electrical signal, a characteristic of all electronic
circuits.” Now, what is noise? Can we define it mathematically?

Consider the following two scenarios: 1. You talk to a friend on a street and a bus passes by.
2. You wait for a bus in a bus station. Is the sound of bus noise? You may consider an opposite
situation. Strangers talk next to you but you wait for a bus. Is their talk noise? Basically, one
may split the heard into two part; meaningful + meaningless, wanted + unwanted, interesting
+ uninteresting, and important + unimportant. Noise is just the general name for the second
category. Now how one can define the second category mathematically? It may be uninterest-
ing because it is unstructured or unpredictable, i.e., random. In other words, we can define it
mathematically as a random process. Then the first category should be structured or ordered; it
should be regular mathematically. In short, ‘signal + noise’.

We close this section by defining a noise model formally. From the original signal u, we
observe noisy version uo of u:

uo = u+ n, (2.1)

where n is a random process and u belongs to a certain type of regular signals. It is called
the additive noise model. As you can guess, one another possible model is multiplicative such
as uo = u · n. By taking the logarithm, one may derive an additive formulation. Hence we
consider the former exclusively.

3. WHAT IS DENOISING?

Removing noise from signals or images is called denoising. More specifically, the goal is
to reconstruct the original signal u from noisy observation u0 [6]. If u is an 1-dimensional
function, it includes signals such as audio, if 2-dimensional, it includes images, and if 3-
dimensional, it includes video (It could be even higher dimensional. what would it be?). It
involves designing an operator D called a denoising processor: ũ = Duo. Ideally, if n is given
or known, then u can be recovered by the subtraction. so, ũ = uo − n = u. However, n is
random. Thus, to remove noise, we require some prior information.

How much do we know about n? At least its distribution should be known. Usually ho-
mogeneous white noise is assumed. White noise means the randomness with a constant power
spectral density. In other words, it has the same density along frequencies after Fourier trans-
form. It is white as a light, otherwise it is color noise. For a discrete signal or image, it is used
for independent random variables with zero mean and finite variance. Homogeneity implies
same means and variances everywhere. Distribution doesn’t change spatially, for example.

Gaussian white noise is often assumed; noise follows a normal distribution with zero mean.
It is the standard or universal noise model. If the noise property is not known or you have no
idea, just assume it. However, often quantities interested are nonnegative, sounds and photos,
for examples. Photography records light by means of sensoring photons, which are positive.
Noise should also consist of photons, so its mean cannot be zero except the case of no noise, and
usually a different distribution is assumed for photons. But under the sunlight, huge amounts of
photons are captured by each sensor of digital camera. Thus, the value returned by each sensor
can be regarded as a number drawn from a normal distribution by the following theorem:
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Theorem 3.1 (Central Limit Theorem (CLT)). Let X1, X2 · · · be iid random variables with
EXi = µ and var(Xi) = σ2 < ∞. Let Sk = X1 + · · ·+Xk. Then Sk−kµ

σn1/2 converges weakly
to a standard normal distribution.

When the light source is about constant, the number of photons received by each sensor fluc-
tuates around its average by CLT. One may set the mean of noise zero if it is small enough, or
by mean-shifting if considerable. Hence Gaussian white noise can be understood as an ideal
noise.

We consider a perfect denoising shortly; how can we guarantee ũ = Duo = u? Assume we
can generate multiples of data as many as possible:

u(1)o = u+ n(1), u(2)o = u+ n(2), . . . ,

then the sample mean 1/k
∑k

i=1 u
(i)
o will recover the true u in the limit sense by the following

theorem:

Theorem 3.2 (Law of Large Numbers (LLN)). Let X1, X2 · · · be iid random variables with
E|Xi| < ∞. Let Sk = X1 + · · ·+Xk and EXi = µ. Then,

Sk/k → µ a.s. as k → ∞.

Thus, assuming white noise or mean-zero noise, if we sufficiently collect data, i.e., k is large
enough,

ū =
1

k

k∑
i=1

u(i)o ≈ u. (3.1)

Often in experimental situations, researchers measure multiple instances to average out errors.
Humble human beings also use the same tactic through experiences in everyday life, and such
strategies can be justified by Theorem 3.2 (LLN) under proper assumptions. In reality, the
limitation is that the number of samples is always limited. For example, taking multiple shots
of the exact same scene is fairly circumscribed, due to moving objects such as humans and
cars, sudden illumination such as reflection by windows, variations by wind, etc. In some
situations, obtaining multiple copies is very costly or impossible. But we note that LLN tells
us the fundamental principle for denoising: taking average. We also note that mean is the
Maximum Likelihood Estimator (MLE) of the normal distribution and it is closely related to
least squares, which approximates the optimal solution of overdetermined systems with the
most important application, data fitting.

We introduce a general denoising model by invoking statistical modeling; since noise it-
self is viewed as random phenomena, probabilistic/statistic interpretation and understanding
are inevitable. The denoising processor D can be modeled as Maximum A Posteriori (MAP)
estimation [7, 6]. By Bayes’ formula, the posterior probability given observation uo is

p(u|uo) =
p(uo|u)p(u)

p(uo)
. (3.2)

The prior model specifies how images are distributed a priori, or equivalently, which images
occur more frequently than others. Probabilistically, it specifies the prior probability p(u). Note
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that uo denotes the noised data that are observed or measured. The data model is to model how
uo is generated from u, or to specify the conditional probability p(uo|u). Now, the denoising
processor D is achieved by solving the MAP problem maxu p(u|uo), which is equivalent to
maximizing the product of the prior model and the data model, since the denominator is a fixed
normalization constant once u0 is given. In words, we seeks ‘what is the most plausible u
under the given observation uo?’.

An variational form or energy model can be driven from MAP (3.2). Under the notice
that probability distributions are often expressed by the exponential functions, by taking the
logarithm on the right hand side of (3.2), we have

log p(uo|u) + log p(u)− log p(uo).

Since uo is already observed, the last term may be dropped. By changing sign and replacing
notations properly, we have the following variational form [7]:

min
u

E[u] +
λ

2
E[u0|u], (3.3)

where λ/2 is the Lagrange multiplier. The first term is called the image prior or the regularity
term and the second term is called the data-fitting term or data-fidelity term. The Lagrange
multiplier λ expresses the balance between prior and fitting. Due to the Lagrange multiplier,
the variational form is closely related to the following constrained optimization problems:{

minuE[u]
subject to E[u0|u] ≤ C1

and
{

minuE[u0|u]
subject to E[u] ≤ C2

. (3.4)

Designing a proper image prior and a data-fitting is called the image modeling and deriving a
suitable image model on the given situation is very crucial in image and signal processing.

We close this section by introducing methodologies of measuring the signal quality. Signal-
to-noise ratio (SNR) is often adopted for such a criterion, which compares the level of a desired
signal to the level of background noise [23]. Although the perception of human beings on
the quality may be a little different from SNR, it provides a value-neutral quantity. More
specifically, SNR is defined as the ratio between the variance of a signal and that of noise:

SNR =
σ2
u

σ2
n

=
E∥u∥2

E∥uo − u∥2
, (3.5)

where σu and σn represent the standard deviations of the signal and noise, respectively. If u
is replaced by Du = ũ, it can be treated as the numerical value of the risk [16]. SNR is often
expressed using the logarithmic scale SNRdB = 10 log10 SNR, measured in decibels. One
another available alternative is peak signal-to-noise ratio (PSNR). It measures the ratio between
the maximum possible power of the signal and the power of noise. Its technical definition can
be easily found in the literature, even in Wikipedia [22]. Lastly, method noise is recently
introduced by Buades et al [3] to check which geometrical features or details are preserved and
which are eliminated after image denoising. It is defined as the difference between an image u
and its denoised version Du = ũ:

n(D, u) = u−Du.
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4. FILTERING

In general, a filter is a device or process that removes some unwanted components or features
from a signal [21]. This category includes the most traditional but the most widely used meth-
ods since the structure is simple, so a fast or real-time implementation is possible, although it
may be inaccurate compared to other sophisticated methods.

It is reasonable to assume the local homogeneity in a neighborhood; if we assume some
regularity as a function, values should be similar locally. For denoising purpose, one may
take local average as a substitute or approximate for the denoising scheme (3.1) by LLN. For
example, one may apply the following averaging filter or lowpass filter [13]:

ũ(i, j) =
1

|N |
∑

(i′,j′)∈N

uo(i
′, j′),

where N is a neighborhood of (i, j). If N = {(i+ k, j +m) | k,m = 0 or ± 1} is chosen for
the neighborhood, 9 point average is taken. More generally, a weighted average can be taken:

ũ(i, j) =
∑

(i′,j′)∈N

w(i′, j′)uo(i
′, j′),

where
∑

(i′,j′)∈N ω(i′, j′) = 1. Such time or space-invariant filter can be rewritten as a convo-
lution:

ũ(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)uo(x− s, y − t) := ω ∗ uo. (4.1)

If the weight w is chosen from a normal distribution according to the distance from the origin,
it can be regarded as the solution to the heat equation which performs averaging infinitesimally.
If the explicit forward time method with the five-point stencil discrete Laplacian is applied to
the standard heat equation, we have

ut+△t
(i,j) − ut(i,j)

△t
=

ut(i+1,j) + ut(i−1,j) + ut(i,j+1) + ut(i,j−1) − 4ut(i,j)

h2
.

By a rearrangement, we derive the following iteration of the weighted mean filter:

ut+△t
(i,j) = (1− 4α)ut(i,j) + α

[
ut(i+1,j) + ut(i−1,j) + ut(i,j+1) + ut(i,j−1)

]
, (4.2)

with α = △t/h2 < 1/4. Actually one may glimpse the relation between random walk and
diffusion as a continuum limit.

If the assumption on local homogeneity is broken, it will average out inhomogeneity. Jumps
or edges in an image are crashed and the image becomes blurry. Note that the heat equation is
also an isotropic diffusion. That is one clear drawback of the averaging filter. To fix it, many
other filters are introduced using other statistics such as median filter.

If Fourier transform is taken on the convolution in (4.1),̂̃u(ω) = ŵ(ω)ûo(ω).
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Thus, it can be viewed as the modulation by ŵ along the frequency spectrum of uo, attenuating
high frequency bands for example. Thus, one may also modulate the magnitude along the
spectrum by attenuating or strengthening, which is called frequency filtering. The former is
called spatial filtering.

If one considers discrete Fourier transform (DFT) on the one dimensional signal uo[m],
m = −M, · · · ,M ,

uo[m] =
1

2M + 1

+M∑
k=−M

ûo[k] exp

(
i2πkm

2M + 1

)
, where ûo[k] =

+M∑
m=−M

uo[m] exp

(
−i2πkm

2M + 1

)
.

(4.3)
One may truncate the high frequency terms treating high oscillations as noise:

ũ[m] =
1

2M + 1

+M̃∑
k=−M̃

ûo[k] exp

(
i2πkm

2M + 1

)
, (4.4)

for some 0 ≤ M̃ < M . It is a crude denoising in the frequency domain and this truncated
DFT is also related to the solution of the heat equation by separation of variables which leads
to Fourier series expansion, since the high frequency terms exponentially decay.

This type of truncation is also related to the lossy compression. Assuming the evenness
of the image, DFT is reduced to discrete cosine transform (DCT), and a proper selection and
thresholding of the DCT coefficients is the main idea of the popular image compression tech-
nique jpeg. Such frequency filtering is crucial in many places, such as wireless communication
and imaging areas including MRI and CT images.

5. SHRINKAGE OR THRESHOLDING

To reach the idea of wavelet shrinkage by Donoho and Johnstone [10], we follow the logic
in [16]. For such purpose, we start from the Bayesian decision theory, which is originated from
Bayes’ formula (3.2). The risk of the denoiser D of uo is the average loss with respect to the
probability distribution of the noise n:

r(D, u) = E{∥u−Duo∥2} (5.1)

with uo[m] = u[m] + n[m], m = 0, · · ·M − 1, similar to (2.1). If one assumes the prior
probability distribution π, we can define Bayes risk, which is the expected risk with respect to
π:

r(D, π) = Eπ{r(D, u)}. (5.2)

Definitely we want to minimize Bayes risk, which yields minimum Bayes risk:

r(π) = inf
D∈O

r(D, π),

where O is the set of all operators. If we restrict such D on the set Ol of all linear operators, the
optimal operator is called the Wiener filter and it can be derived by using covariance matrices:
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Theorem 5.1 (Wiener filter). If the signal u and noise n are independent with the covariance
matrices Ru and Rn, respectively, then the Wiener filter that minimizes E{∥ũ− uo∥2} is

ũ = Ru(Ru +Rn)
−1uo. (5.3)

Notice that if Ru and Rn are uncorrelated, and so are diagonal with the variances σ2
u[m] and

σ2
n[m], the relation (5.3) is the following ratio:

ũ[m] =
σ2
u[m]

σ2
u[m] + σ2

n[m]
uo[m]. (5.4)

We can clearly interpret it; if the variance of the signal is relatively larger than that of the noise,
we trust the observed data uo[m] and don’t shrink much. On the other hand, if that of the signal
is relatively smaller, it is very possible to be noise so we shrink.

Since the covariance operator is symmetric and positive semi-definite, it can be diagonal-
ized using eigenvectors with decreasing order of eigenvalues, called the Karhunen-Loéve basis
or Principal Component Analysis (PCA). If the covariance operators Ru and Rn are diago-
nalizable under the same Karhunen-Loéve basis, the equation (5.4) is accomplished. We also
remark that the standard heat operator is also symmetric and positive semi-definite, it can be
diagonalizable by sinusoidal waves. Its discrete version is given in (4.3), and then one may
speculate the resemblance between (4.4) and (5.4).

It is generally not possible to compute the optimal Bayes estimator. To avoid such com-
plexity, classical strategies choose a linear operator, although the minimum risk among linear
estimators may be far beyond the minimum risk from all estimators. Thus we consider a par-
ticular class of nonlinear estimators that are diagonal in a basis B.

In the basis B = {vm}0≤m<M , uo has the following basis expansion:

uo =

M−1∑
m=0

uBo [m]vm where uBo [m] = ⟨uo, vm⟩.

A diagonal operator estimates each uB[m] by multiplying uBo [m] by a factor am(uBo [m]) inde-
pendently:

ũ = Duo =

M−1∑
m=0

uBo [m]am(uBo [m])vm. (5.5)

For such am(·), one may choose the hard thresholding HT λ with the parameter λ:

HT λ(x) =


x if x ≥ λ,

0 if |x| < λ,

x if x ≤ −λ.

(5.6)

One may compare it with the truncation in (4.4) which is linear with fixed M̃ and assume that
low order or smooth terms are signal and high order or highly oscillatory terms are noise. The
idea of hard thresholding is that if the amplitude uBo [m] is large enough, it is very possible to
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be a signal and we keep. Otherwise, it is likely to be noise, we throw away. But if the value
is often just little above or below the thresholding level λ, is the decision by HT λ proper?
Furthermore, it is discontinuous.

With such concerns, one may consider the following alternative, which is called the soft
thresholding ST λ with the parameter λ [9]:

ST λ(x) =


x− λ if x ≥ λ,

0 if |x| ≤ λ,

x+ λ if x ≤ −λ.

(5.7)

The operator is now continuous and still shrink even if the signal strength is more than thresh-
olding level λ.

Now one big question is arising: How does one choose the thresholding level λ? What is
optimal? Donoho and Johnstone [10] showed the fundamental result that the risk of threshold-
ing estimators is close to that of the oracle projector, which is the diagonal estimator by some
strong prior knowledge. For more details, we refer to [16].

Theorem 5.2 (Donoho, Johnstone). Let λ = σ
√
2 lnM . The risk rth(u) of a hard- or soft-

thresholding estimator satisfies for all M ≥ 4,

rth(u) ≤ (2 lnM + 1)
(
σ2 + rpr(u)

)
.

The factor 2 lnM is optimal among diagonal estimators in B:

lim
M→∞

inf
D∈Od

sup
u∈CM

E{∥u−Duo∥2}
σ2 + rpr(u)

1

2 lnM
= 1,

where Od is the set of all diagonal operator and rpr is the risk of the oracle projector.

6. REGULARIZATION

We recall the variational form (3.3):

min
u

E[u] +
λ

2
E[u0|u].

Under this setting, we have to choose a regularity term E[u] and a fitting term E[u0|u]. If
we assume the Gaussian white noise, naturally the least square term ∥u − u0∥22 comes out
for the fitting term E[u0|u]. One popular choice of the regularity term E[u] is also adding
the L2 criteria ∥u∥22, then it is called Tikhonov regularization, which is widely used in inverse
problems. One may choose the L1 norm ∥u∥1 which enforces sparsity of u, which will be
discussed in the next section. Considering the regularity or differentiability of u, one may
choose the L2 norm or the L1 norm of the gradient ∇u. If the L2 norm of the gradient of u
is chosen, we consider Sobolev space as a proper function space for the original u. From the
energy

min
u

∥∇u∥22 +
λ

2
∥u− u0∥22,
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one may derive the following elliptic equation as Euler-Lagrange equation:

−∆u+ λ(u− uo) = 0.

Since the Laplacian ∆u is isotropic, blur in the solution u is expected by crushing edges and
jumps, similar to the heat equation case (4.2).

To overcome such drawbacks, Rudin, Osher, and Fatemi [20] introduce the following energy,
called total variation (TV) denoising or Rudin-Osher-Fatemi model, assuming u belong to the
space of bounded variations (BV):

min
u

∥∇u∥1 +
λ

2
∥u− u0∥22.

Its Euler-Lagrange equation is

−∇ ·
[
∇u

|∇u|

]
+ λ(u− uo) = 0. (6.1)

In (6.1), the term 1/|∇u| can be understood as a diffusion coefficient or conductivity of heat;
if the region is smooth or homogeneous, |∇u| is small. Thus the diffusion coefficient 1/|∇u|
is large, local fluctuations are averaged out by diffusion. Along edges and jumps, |∇u| is
very large and so 1/|∇u| is small, hence there is a little diffusion due to the low conductivity.
Thus edges and jumps are kept. Actually, BV space allows discontinuity. BV space may
be considered as the space of piecewise differentiable functions. Meanwhile, Sobolev space
doesn’t allow such discontinuity.

TV denoising model and the anisotropic diffusion by Perona and Malik [19] triggered the
researches in image processing by mathematicians and image processing problems including
denoising are popularized in applied mathematics, especially in the areas of partial differential
equations and numerical analysis.

After introducing a discretization, solving a PDE such as (6.1) numerically becomes the
iteration of a discrete filter, similar to (4.2). Then, how is it different from designing a discrete
filter directly? Basically, PDE theory and numerical analysis answer the stability issues and
the behavior of the limit by iterations. Even when we apply a discrete filter, if denoising is
not satisfactory, we may try to apply the filter more than one time. To forecast what happens
eventually, one may investigate PDE-related to the filter and invoke the theories for stabilities
and limits.

Usually the solution of a PDE satisfies some types of smoothness. However, so-called tex-
ture such as patterns in furs, rocks and soils is not smooth at all. Due to the regularity as-
sumptions, details and fine structures behave as noise in function aspects. Thus, the denoising
scheme induced by PDE washes out them. Human beings also recognize them as meaningful
or geometric objects. It is a typical defect in the variational PDE methods.

Starting from Rudin-Osher-Fatemi model, Yves Meyer considers the ‘texture + noise’ com-
ponent as an ‘oscillating pattern’ which is defined by Besov norm estimates and develops so
called Meyer G norm [17]. In other words, if one wants to analyze ‘texture’ mathematically,
various Besov-type function spaces may be necessary. Combining TV model and oscillatory
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functions by Meyer, Osher, Sole and Vese [18] developed a model for image restoration and
image decomposition into cartoon and texture by using the negative Sobolev space H−1.

7. DATA ADAPTED METHODS

Buades, Coll and Morel introduced the following nonlocal means algorithm [3]. Shortly
speaking, it estimates the value of x as an average of the values of all the pixels whose Gaussian
neighborhood looks like the neighborhood of x:

u(x) = NL(uo)(x) =
1

C(x)

∫
Ω
exp

(
−(Ga ∗ |uo(x+ .)− uo(y + .)|2)(0)

h2

)
uo(y)dy,

(7.1)
where Ga is the Gaussian kernel with the standard deviation a, h acts as a filtering parameter,
and C(x) =

∫
Ω exp

(
− (Ga∗|uo(x+.)−uo(z+.)|2)(0)

h2

)
dz is the normalizing factor. Lastly,

Ga ∗ |uo(x+ .)− uo(y + .)|2)(0) =
∫
R2

Ga|uo(x+ t)− uo(y + t)|2dt,

which measures the distance between the neighborhoods of x and y under Gaussian weights.
They noticed that every small window in a natural image has many similar windows in the

same image. In that sense it is highly redundant. Instead of acknowledging the given image as
one instance, the given image can be regarded as a composition of local images, called patches.
For example, one may consider the 5×5 neighboring patch for each pixel, then the given image
consists of many small images. If there are many alike patches by selfsimilarity and we take
the average among them, we obtain the ideal denoising method in (3.1). The locations of those
patches may not be close together, that is why it is called nonlocal means.

The average filter and frequency filtering in Section 4 and variational PDE methods in Sec-
tion 6 belong to local smoothing methods, which may reconstruct main geometrical configu-
rations but fail to preserve the fine structure, details, and texture. But nonlocal means bypass
such restriction by exploiting innate redundancy and selfsimilarity.

The truncation in (4.4), hard thresholding (5.6) and soft thresholding (5.7) try to make its
coefficient sparse to achieve denoising under some orthogonal basis. If we have a redundant set
consisting of clean patches or good prototypes, where the redundancy means spanning same
set but possibly linearly dependent, than the chance for sparsity will increase. Such a code
book is called a dictionary and those members are called atoms.

Let A be a given dictionary, where each column is an atom. Then we can consider the
following optimization problem:

min
x

∥x∥0 subject to ∥Ax− uo∥ < ϵ, (7.2)

where ∥x∥0 is the number of nonzeros in x. Since the dictionary A is redundant, if A is a
m × p matrix, m ≤ p and thus the equation is underdetermined. Considering Ax = uo, if
one assumes at least one solution, there must be infinitely many; under the assumption that the
matrix A have full rank, the dimension of the solution is p − m. Among them we seek the
sparsest solution by penalizing the number of nonzero in x and ũ = Ax is represented by a few
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columns in A. If the dictionary A consists of good and clean patches or prototypes, ũ = Ax is
a denoised version of uo.

Due to nonconvexity and non-differentiability, ∥ · ∥0 is often replaced by ∥ · ∥1 and then it is
called the basis pursuit denoising problem [8]:

min
x

∥x∥1 subject to ∥Ax− uo∥ < σ2, (7.3)

which is closely related to compressed sensing [4, 5]. Their general form is described in (3.3)
and (3.4). Note that soft thresholding (5.7) is a closed-form solution for minx λ|y|+ 1

2 |y−x|2,
and one can quickly figure out the closed-form solution for

min
x

λ∥x∥1 +
1

2
∥y − x∥22.

With the Lagrange multiplier or thresholding level λ, soft thresholding is a basic tool to solve
L1 problems including (7.3).

Although pre-constructed dictionaries consisting of existing bases such as DFT, DCT, and
wavelets lead to fast transforms of the complexity O(m logm), they are typically limited to
sparsify the signals and images of interest. Thus, generating a dictionary to sparsify only
a certain type of signals or images, called dictionary learning is developed in the machine
learning point of view:

min
A,{xi}Mi=1

∥xi∥0 subject to ∥yi −Axi∥ < ϵ, 1 ≤ i ≤ M, (7.4)

where {y}Mi=1 is a training database consisting of typical signals/images of interest. After run-
ning a computational algorithm, The dictionary A should consists of good and clean patches or
prototypes by learning or experiencing through the data base {y}Mi=1. K-SVD algorithm [1] is
such an instance, which is closely related to k-means clustering and singular value decomposi-
tion or PCA. For more details, we refer to [12].

8. CONCLUSION

In this paper, we review noise, denoising, and its major branches in somewhat unorganized
and messy fashion, which is the nature of noise. We emphasize again the fundamental principle
for denoising; taking average. Actually all methods try proper averaging without obtaining
several copies. The problem of denoising will long live, since most algorithms are away from
a desirable level of applicability. Furthermore, more and more new problems flow into this
enterprise.

We remind that we don’t restrict the dimension of the problem. Now what is that data with
the dimension more than 3? They may be data from internet, social networks, medical clinics,
financial transactions, to name a few; we live in a deluge of data. Now, big data is an overused
buzzword, the stuff people don’t understand but want to sell. It may be described as tremendous
items in a higher dimensional space and there could be some weird phenomena which can not
be observed in low dimensional spaces we got used to, such as curse of dimensionality, or
concentration of measure [15]. However, they may be divided into two categories; ‘information
+ non-information’, like ‘signal + noise’. Thus, we may denoise them. Furthermore, we also
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observe that denoising is closely related to other problems such as lossy compression and
representation. They are all related to the dimensionality reduction of data.

Turning back to images, denoising is a part of the image restoration problem, since noise is
a part of image degradation:

uo = Ku+ n,

where K is a blur kernel explaining blurring in the image, defocusing and motion blur, for
examples. Thus, image restoration consists of denoising and deblurring. For more reading, we
recommend Gonzalez and Woods [13] for general and engineering aspects. For mathematical
point of view, Chan and Shen [6] and Aubert and Kornprobst [2] are recommended. Also, Chan,
Shen, and Vese’s review paper [7] is also an excellent introductory. For wavelets and related
signal/image processing, one has to consult with Mallat [16], and for sparse and redundant
representation, Elad [12] is excellent. Toward machine learning and data analysis, Duda, Hart
and Stork [11] is popular, and Hastie, Tibshirani, and Friedman [14] is advanced. Actually,
there must be many many excellent books in this huge world, which the author may neither
know nor explore.
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