• 제목/요약/키워드: wavelet packet analysis

검색결과 51건 처리시간 0.024초

2차원 웨이브렛 패킷에 기반한 필기체 문자인식의 특징선택방법 (A Feature Selection for the Recognition of Handwritten Characters based on Two-Dimensional Wavelet Packet)

  • 김민수;백장선;이귀상;김수형
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권8호
    • /
    • pp.521-528
    • /
    • 2002
  • 본 논문에서는 문자인식의 특징선택방법으로 2차원 웨이브렛 패킷을 이용하는 새로운 방법을 제안한다. 영상자료의 특징들로부터 중심특징을 선택하기 위한 차원축소 기법으로 주성분분석 기법이 주로 사용된다. 하지만, 주성분분석 기법은 고유시스템에 의존하기 때문에, 이상치나 잡음 등에 민감할 뿐만 아니라, 전역적 특징만을 선택하는 경향이 있다. 때때로, 영상자료의 중요한 특징이 가장자리 부분이나 뽀족한 부분 같은 지역적 정보일 수 있다. 이러한 경우, 주성분분석 기법은 좋은 결과를 줄 수 없다. 또한 고유시스템은 많은 계산시간을 요구한다. 본 논문에서 원 자료는 2차원 웨이브렛 패킷기저에 의해 변환되고, 최적 판별 기저가 탐색된 후, 그것으로부터 적절한 특징이 선택된다. 주성분분석 기법과 비교하여, 제안된 방법은 웨이브렛의 좋은 특성에 의해 전역적 특징뿐만 아니라 지역적 특징의 선택이 빠른 계산시간으로 이루어진다. 제안된 방법의 성능을 보이기 위해 PCA와 제안된 방법의 인식률의 실험결과가 분석되었다.

Damage detection for a beam under transient excitation via three different algorithms

  • Zhao, Ying;Noori, Mohammad;Altabey, Wael A.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.803-817
    • /
    • 2017
  • Structural health monitoring has increasingly been a focus within the civil engineering research community over the last few decades. With increasing application of sensor networks in large structures and infrastructure systems, effective use and development of robust algorithms to analyze large volumes of data and to extract the desired features has become a challenging problem. In this paper, we grasp some precautions and key points of the signal processing approach, wavelet, establish a relative reliable framework, and analyze three problems that require attention when applying wavelet based damage detection approach. The cases studies how to use optimal scales for extracting mode shapes and modal curvatures in a reinforced concrete beam and how to effectively identify damages using maximum curves of wavelet coefficient differences. Moreover, how to make a recognition based on the wavelet multi-resolution analysis, wavelet packet energy, and fuzzy sets is a meaningful topic that has been addressed in this work. The relative systematic work that compasses algorithms, structures and evaluation paves a way to a framework regarding effective structural health monitoring, orientation, decision and action.

웨이블릿 영상처리에 의한 도로표면상태 인식 및 분류 (The Recognition and Segmentation of the Road Surface State using Wavelet Image Processing)

  • 한태환;류승기;송원석;이승래
    • 조명전기설비학회논문지
    • /
    • 제22권4호
    • /
    • pp.26-34
    • /
    • 2008
  • 본 연구는 도로 관제 목적으로 사용 중인 가시 카메라(Visible Camera)를 사용하여 촬영한 도로표면 영상을 화상 인식 도로표면의 상태를 식별하는 방법과 기준을 제안하였다. 먼저, 입력 화상은 낮 시간대의 아스팔트 포장 도로면을 촬영하여 도로표면 상태의 화상을 만들었고, 편광 및 웨이블릿 변환(Wavelet transform)으로 도로 표면을 5가지의 상태(건조, 습윤, 수막, 적설, 동결)로 인식할 수 있는 분류기준절차를 연구하였다. 표면 화상 인식 과정은 편광계수(수직/수평 편광 비율) 값이 1.3 이상이면 젖은 땅으로 분류한 후, 다음으로 젖은 땅을 제외한 나머지는 웨이블릿 패킷 변환을 통해 시간-주파수 분석을 하였다. 또한 영상 템플릿을 이용하여 마른 땅과 빙판의 표준적인 주파수 특성을 분석하여, 마른 땅과 빙판을 구분하였다. 입력 영상에 대해서 제안한 도로표면상태의 인식분류 및 기준에 따라, 도로표면영상에서 마른 부분과 젖은 부분을 구분한 결과를 정리하였다.

웨이블렛 패킷 기반 쿼드트리 알고리즘을 이용한 디지털 워터마킹의 성능 분석 (Performance Analysis for Digital watermarking using Quad-Tree Algorithm based on Wavelet Packet)

  • 추형석;김한길;안종구
    • 융합신호처리학회논문지
    • /
    • 제11권4호
    • /
    • pp.310-319
    • /
    • 2010
  • 본 논문에서는 웨이브렛 변환과 쿼드트리 알고리즘을 이용한 디지털 워터마킹 알고리즘을 제안하였다. 제안한 알고리즘은 웨이블렛 변환과 웨이블렛 패킷 변환을 이용하여 입력영상을 변환하고, 쿼드트리와 Cox 알고리즘을 이용하여 워터마크를 삽입하였다. 제안한 알고리즘의 성능 평가를 위한 시뮬레이션은 DWT 변환 레벨과 대역(HH, LH, HL)에 따른 워터마킹 효과와 AWPT 변환 레벨에 따른 워터마킹의 효과에 대하여 수행하였고, DWT를 이용한 결과와 AWPT를 이용한 결과를 비교하였다. 또한 최저주파수대역(LL)의 워터마킹의 효과에 대하여 알아보았다. 시뮬레이션 결과에서 6 레벨 DWT의 HH, HL, LH 대역에 동시에 워터마크를 삽입하였을 경우에 다른 경우들과 비교하여 가장 좋은 결과를 보였다. 3 레벨의 AWPT의 결과는 3레벨의 DWT 결과와 비교하여 향상된 상관도 값을 보였다. 또한 전체 워터마크 중 30~60%를 LL 대역에 삽입하였을 경우에 PSNR 성능은 1~2dB 정도 떨어지나 추출한 워터마크의 상관도 값은 향상된 결과를 보였다.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Diagnostics and Prognostics Based on Adaptive Time-Frequency Feature Discrimination

  • Oh, Jae-Hyuk;Kim, Chang-Gu;Cho, Young-Man
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1537-1548
    • /
    • 2004
  • This paper presents a novel diagnostic technique for monitoring the system conditions and detecting failure modes and precursors based on wavelet-packet analysis of external noise/vibration measurements. The capability is based on extracting relevant features of noise/vibration data that best discriminate systems with different noise/vibration signatures by analyzing external measurements of noise/vibration in the time-frequency domain. By virtue of their localized nature both in time and frequency, the identified features help to reveal faults at the level of components in a mechanical system in addition to the existence of certain faults. A prima-facie case is made via application of the proposed approach to fault detection in scroll and rotary compressors, although the methods and algorithms are very general in nature. The proposed technique has successfully identified the existence of specific faults in the scroll and rotary compressors. In addition, its capability of tracking the severity of specific faults in the rotary compressors indicates that the technique has a potential to be used as a prognostic tool.

실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구 (A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition)

  • 추준욱;김신기;문무성;문인혁
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Optimization of Pipelined Discrete Wavelet Packet Transform Based on an Efficient Transpose Form and an Advanced Functional Sharing Technique

  • Nguyen, Hung-Ngoc;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.374-385
    • /
    • 2019
  • This paper presents an optimal implementation of a Daubechies-based pipelined discrete wavelet packet transform (DWPT) processor using finite impulse response (FIR) filter banks. The feed-forward pipelined (FFP) architecture is exploited for implementation of the DWPT on the field-programmable gate array (FPGA). The proposed DWPT is based on an efficient transpose form structure, thereby reducing its computational complexity by half of the system. Moreover, the efficiency of the design is further improved by using a canonical-signed digit-based binary expression (CSDBE) and advanced functional sharing (AFS) methods. In this work, the AFS technique is proposed to optimize the convolution of FIR filter banks for DWPT decomposition, which reduces the hardware resource utilization by not requiring any embedded digital signal processing (DSP) blocks. The proposed AFS and CSDBE-based DWPT system is embedded on the Virtex-7 FPGA board for testing. The proposed design is implemented as an intellectual property (IP) logic core that can easily be integrated into DSP systems for sub-band analysis. The achieved results conclude that the proposed method is very efficient in improving hardware resource utilization while maintaining accuracy of the result of DWPT.

How to identify fake images? : Multiscale methods vs. Sherlock Holmes

  • Park, Minsu;Park, Minjeong;Kim, Donghoh;Lee, Hajeong;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • 제28권6호
    • /
    • pp.583-594
    • /
    • 2021
  • In this paper, we propose wavelet-based procedures to identify the difference between images, including portraits and handwriting. The proposed methods are based on a novel combination of multiscale methods with a regularization technique. The multiscale method extracts the local characteristics of an image, and the distinct features are obtained through the regularized regression of the local characteristics. The regularized regression approach copes with the high-dimensional problem to build the relation between the local characteristics. Lytle and Yang (2006) introduced the detection method of forged handwriting via wavelets and summary statistics. We expand the scope of their method to the general image and significantly improve the results. We demonstrate the promising empirical evidence of the proposed method through various experiments.