• 제목/요약/키워드: wavelet decomposition signal

검색결과 111건 처리시간 0.022초

Comparison of wavelet-based decomposition and empirical mode decomposition of electrohysterogram signals for preterm birth classification

  • Janjarasjitt, Suparerk
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.826-836
    • /
    • 2022
  • Signal decomposition is a computational technique that dissects a signal into its constituent components, providing supplementary information. In this study, the capability of two common signal decomposition techniques, including wavelet-based and empirical mode decomposition, on preterm birth classification was investigated. Ten time-domain features were extracted from the constituent components of electrohysterogram (EHG) signals, including EHG subbands and EHG intrinsic mode functions, and employed for preterm birth classification. Preterm birth classification and anticipation are crucial tasks that can help reduce preterm birth complications. The computational results show that the preterm birth classification obtained using wavelet-based decomposition is superior. This, therefore, implies that EHG subbands decomposed through wavelet-based decomposition provide more applicable information for preterm birth classification. Furthermore, an accuracy of 0.9776 and a specificity of 0.9978, the best performance on preterm birth classification among state-of-the-art signal processing techniques, were obtained using the time-domain features of EHG subbands.

Power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal

  • Cao, Xiaoling;Yan, Liangjun
    • Geosystem Engineering
    • /
    • 제21권5호
    • /
    • pp.251-261
    • /
    • 2018
  • With the urbanization in recent years, the power line interference noise in electromagnetic signal is increasing day by day, and has gradually become an unavoidable component of noises in magnetotelluric signal detection. Therefore, a kind of power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal is put forward in this paper. The method first uses wavelet decomposition to change single-channel signal into multi-channel signal, and then takes advantage of blind source separation principle of independent component analysis to eliminate power line interference noise. There is no need to choose the layer number of wavelet decomposition and the wavelet base of wavelet decomposition according to the observed signal. On the treatment effect, it is better than the previous power line interference removal method based on independent component analysis. Through the de-noising processing to actual magnetotelluric measuring data, it is shown that this method makes both the apparent resistivity curve near 50 Hz and the phase curve near 50 Hz become smoother and steadier than before processing, i.e., it effectively eliminates the power line interference noise.

PROPERTIES OF RANDOM SIGNALS IN WAVELET DOMAIN

  • Lee, Young Seock;Kim, Sung Hwan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권1호
    • /
    • pp.107-114
    • /
    • 1999
  • In many applications (e,g., identification of non-destructive testing signal and biomedical signal and multiscale analysis of image), it is of interest to analyze and identify phenomena occurring at the different scales. The recently introduced wave let transforms provide a time-scale decomposition of signals that offers the possibility of such signals. However, there is no corresponding statistical properties to development of multiscale statistical signal processing. In this paper, we derive such properties of random signals in wavelet domain.

  • PDF

IMAGE QUALITY OPTIMIZATION BASED ON WAVELET FILTER DESIGN AND WAVELET DECOMPOSITION IN JPEG2000

  • Quan, Do;Ho, Yo-Sung
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.7-12
    • /
    • 2009
  • In JPEG2000, the Cohen-Daubechies-Feauveau (CDF) 9/7-tap wavelet filter adopted in lossy compression is implemented by the lifting scheme or by the convolution scheme while the LeGall 5/3-tap wavelet filter adopted in lossless compression is implemented just by the lifting scheme. However, these filters are not optimal in terms of Peak Signal-to-Noise Ratio (PSNR) values, and irrational coefficients of wavelet filters are complicated. In this paper, we proposed a method to optimize image quality based on wavelet filter design and on wavelet decomposition. First, we propose a design of wavelet filters by selecting the most appropriate rational coefficients of wavelet filters. These filters are shown to have better performance than previous wavelet ones. Then, we choose the most appropriate wavelet decomposition to get the optimal PSNR values of images.

  • PDF

Image Global K-SVD Variational Denoising Method Based on Wavelet Transform

  • Chang Wang;Wen Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.275-288
    • /
    • 2023
  • Many image edge details are easily lost in the image denoising process, and the smooth image regions are prone to produce jagged. In this paper, we propose a wavelet-based image global k- singular value decomposition variational method to remove image noise. A layer of wavelet decomposition is applied to the noisy image first. Then, the image global k-singular value decomposition (IGK-SVD) method is used to remove the random noise of low-frequency components. Furthermore, a constructed variational denoising method (VDM) removes the random noise in the high-frequency component. Finally, the denoised image is obtained by wavelet reconstruction. The experimental results show that the proposed method's peak signal-to-noise ratio (PSNR) value is higher than other methods, and its structural similarity (SSIM) value is closer to one, indicating that the proposed method can effectively suppress image noise while retaining more image edge details. The denoised image has better denoising effects.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

이산 웨이블렛 변환 기법을 이용한 변압기 열화신호의 특징추출에 관한 연구 (A Study on Feature Extraction of Transformers Aging Signal using discrete Wavelet Transform Technique)

  • 박재준;권동진;송영철;안창범
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권3호
    • /
    • pp.121-129
    • /
    • 2001
  • In this paper, a new efficient feature extraction method based on Daubechies discrete wavelet transform is presented. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of aging(the early period, the middle period, the last period)

  • PDF

Lung Sound Classification Using Hjorth Descriptor Measurement on Wavelet Sub-bands

  • Rizal, Achmad;Hidayat, Risanuri;Nugroho, Hanung Adi
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1068-1081
    • /
    • 2019
  • Signal complexity is one point of view to analyze the biological signal. It arises as a result of the physiological signal produced by biological systems. Signal complexity can be used as a method in extracting the feature for a biological signal to differentiate a pathological signal from a normal signal. In this research, Hjorth descriptors, one of the signal complexity measurement techniques, were measured on signal sub-band as the features for lung sounds classification. Lung sound signal was decomposed using two wavelet analyses: discrete wavelet transform (DWT) and wavelet packet decomposition (WPD). Meanwhile, multi-layer perceptron and N-fold cross-validation were used in the classification stage. Using DWT, the highest accuracy was obtained at 97.98%, while using WPD, the highest one was found at 98.99%. This result was found better than the multi-scale Hjorth descriptor as in previous studies.

웨이브렛 변환을 이용한 전력품질 데이터 압축에 관한 연구 (Power Quality Data Compression using Wavelet Transform)

  • 정영식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권12호
    • /
    • pp.561-566
    • /
    • 2005
  • This paper introduces a compression technique for power qualify disturbance signal via discrete wavelet transform(DWT). The proposed approach is based on a previous estimation of the stationary component of power quality disturbance signal, so that it could be subtracted from the original signal in order to reduce a dynamic range of signal and generate transient events signal, which is subsequently applied to the compression technique. The compression techniques is performed through the difference signal decomposition, thresholding of wavelet coefficients, and signal reconstruction. It presents the relation between compression efficiency and threshold. It shouts that the wavelet transform leads to a power quality data compression approach with high compression efficiency, small compression error and good de-nosing effect.