• 제목/요약/키워드: wavelet classification

검색결과 275건 처리시간 0.021초

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Wavelet Pair Noise Removal for Increasing the Classification Accuracy of a Remotely Sensed Image

  • Jin, Hong-Sung;Yoo, Hee-Young;Eom, Joo-Young;Choi, II-Su;Han, Dong-Yeob
    • 대한원격탐사학회지
    • /
    • 제25권3호
    • /
    • pp.215-223
    • /
    • 2009
  • The noise removal as a preprocessing was tried with various kinds of wavelet pairs. Wavelet transform for 2D images generally uses the same wavelets as basis functions in horizontal and vertical directions. A method with different wavelets was tried for each direction separately, which gives more precise interpretation of the classification. Total 486 pairs of wavelets from nine basis functions were tried to remove image noises. The classification accuracies before and after the noise removal were compared. Although all kinds of wavelet pairs showed the increased accuracies in classification, there were best and worst wavelet pairs depending on the data sets. Wavelet pairs with low energy percentage of LL band showed the high classification accuracy. A pattern was found in the results that very similar vertical accuracy was distributed for each horizontal ones. Since Haar is the shortest length filter, Haar could be a predictor wavelet to find the good wavelet pairs.

THE DECISION OF OPTIMUM BASIS FUNCTION IN IMAGE CLASSIFICATION BASED ON WAVELET TRANSFORM

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.169-172
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have been tried to enhance classification accuracy. Previous studies show that the classification technique based on wavelet transform is more effective than that of traditional techniques based on original pixel values, especially in complicated imagery. Various wavelets can be used in wavelet transform. Wavelets are used as basis functions in representing other functions, like sinusoidal function in Fourier analysis. In these days, some basis functions such as Haar, Daubechies, Coiflets and Symlets are mainly used in 2D image processing. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we computed the wavelet coefficients of satellite image using 10 different basis functions, and then classified test image. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis function. The energy parameter of signal is the sum of the squares of wavelet coefficients. The energy parameter is calculated by sub-bands after the wavelet decomposition and the energy parameter of each sub-band can be a favorable feature of texture. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

  • PDF

Comparison of wavelet-based decomposition and empirical mode decomposition of electrohysterogram signals for preterm birth classification

  • Janjarasjitt, Suparerk
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.826-836
    • /
    • 2022
  • Signal decomposition is a computational technique that dissects a signal into its constituent components, providing supplementary information. In this study, the capability of two common signal decomposition techniques, including wavelet-based and empirical mode decomposition, on preterm birth classification was investigated. Ten time-domain features were extracted from the constituent components of electrohysterogram (EHG) signals, including EHG subbands and EHG intrinsic mode functions, and employed for preterm birth classification. Preterm birth classification and anticipation are crucial tasks that can help reduce preterm birth complications. The computational results show that the preterm birth classification obtained using wavelet-based decomposition is superior. This, therefore, implies that EHG subbands decomposed through wavelet-based decomposition provide more applicable information for preterm birth classification. Furthermore, an accuracy of 0.9776 and a specificity of 0.9978, the best performance on preterm birth classification among state-of-the-art signal processing techniques, were obtained using the time-domain features of EHG subbands.

웨이블릿에 기반한 시그널 형태를 지닌 대형 자료의 feature 추출 방법 (A Wavelet based Feature Selection Method to Improve Classification of Large Signal-type Data)

  • 장우성;장우진
    • 대한산업공학회지
    • /
    • 제32권2호
    • /
    • pp.133-140
    • /
    • 2006
  • Large signal type data sets are difficult to classify, especially if the data sets are non-stationary. In this paper, large signal type and non-stationary data sets are wavelet transformed so that distinct features of the data are extracted in wavelet domain rather than time domain. For the classification of the data, a few wavelet coefficients representing class properties are employed for statistical classification methods : Linear Discriminant Analysis, Quadratic Discriminant Analysis, Neural Network etc. The application of our wavelet-based feature selection method to a mass spectrometry data set for ovarian cancer diagnosis resulted in 100% classification accuracy.

이산 웨이블릿 변환을 이용한 지문의 계층적 분류 (Hierarchical classification of Fingerprints using Discrete Wavelet Transform)

  • 권용호;이정문
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.403-408
    • /
    • 1999
  • An efficient method is developed for classifying fingerprint data based on 2-D discrete wavelet transform. Fingerprint data is first converted to a binary image. Then a multi-level 2-D wavelet transform is performed. Vertical and horizontal subbands of the transformed data show typical energy distribution patterns relevant to the fingerprint categories. The proposed method with moderate level of wavelet transform is successful in classifying fingerprints into 5 different types. Finer classification is possible by higher frequency subbands and closer analysis of energy distribution.

  • PDF

웨이브렛과 신경회로망을 이용한 뇌 유발 전위의 인식에 관한 연구 (A Study on Recognition of the Event-Related Potential in EEG Signals Using Wavelet and Neural Network)

  • 최완규;나승유;이희영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.127-130
    • /
    • 2000
  • Classification of Electroencephalogram(EEG) makes one of key roles in the field of clinical diagnosis, such as detection for epilepsy. Spectrum analysis using the fourier transform(FT) uses the same window to signals, so classification rate decreases for nonstationary signals such as EEG's. In this paper, wavelet power spectrum method using wavelet transform which is excellent in detection of transient components of time-varying signals is applied to the classification of three types of Event Related Potential(EP) and compared with the result by fourier transform. In the experiments, two types of photic stimulation, which are caused by eye opening/closing and artificial light, are used to collect the data to be classified. After choosing a specific range of scales, scale-averaged wavelet spectrums extracted from the wavelet power spectrum is used to find features by Back-Propagation(13P) algorithm. As a result, wavelet analysis shows superiority to fourier transform for nonstationary EEG signal classification.

  • PDF

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

A Comparative Study of 3D DWT Based Space-borne Image Classification for Differnet Types of Basis Function

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제24권1호
    • /
    • pp.57-64
    • /
    • 2008
  • In the previous study, the Haar wavelet was used as the sole basis function for the 3D discrete wavelet transform because the number of bands is too small to decompose a remotely sensed image in band direction with other basis functions. However, it is possible to use other basis functions for wavelet decomposition in horizontal and vertical directions because wavelet decomposition is independently performed in each direction. This study aims to classify a high spatial resolution image with the six types of basis function including the Haar function and to compare those results. The other wavelets are more helpful to classify high resolution imagery than the Haar wavelet. In overall accuracy, the Coif4 wavelet has the best result. The improvement of classification accuracy is different depending on the type of class and the type of wavelet. Using the basis functions with long length could be effective for improving accuracy in classification, especially for the classes of small area. This study is expected to be used as fundamental information for selecting optimal basis function according to the data properties in the 3D DWT based image classification.

웨이블릿 신경망을 이용한 패턴 분류 시스템 설계 및 EEG 신호 분류에 대한 연구 (A Study of Pattern Classification System Design Using Wavelet Neural Network and EEG Signal Classification)

  • 임성길;박찬호;이현수
    • 전자공학회논문지CI
    • /
    • 제39권3호
    • /
    • pp.32-43
    • /
    • 2002
  • 본 논문에서는 신경망에 기반한 디지털 신호를 위한 패턴분류 시스템을 제안한다. 제안하는 시스템은 두 가지 신경망 모델로 구성된다. 첫 번째 부분은 특징 추출의 역할을 하는 웨이블릿 신경망이다. 이 부분을 위해 기존의 웨이블릿 신경망 모델들을 비교한 후, 특징 추출을 위한 새로운 웨이블릿 신경망 모델을 제안한다. 다른 부분은 패턴 분류를 위한 웨이블릿 신경망이다. 패턴 분류에 적용하기 위해 기존의 웨이블릿 신경망 구조를 수정하고 학습 방법을 제안한다. 패턴 분류 웨이블릿 신경망의 입력은 특징 추출 신경망의 은닉노드의 연결강도, 확장 및 이동 파라미터로 구성되었다. 또 출력은 특징 추출 신경망의 입력 신호가 속한 부류를 나타낸다. 제안한 시스템을 EEG 신호를 주파수에 따라서 분류하는 문제에 적용하였다.