• Title/Summary/Keyword: wave-overtopping

Search Result 143, Processing Time 0.022 seconds

Optimal Design of Overtopping Wave Energy Converter Substructure based on Smoothed Particle Hydrodynamics and Structural Analysis (SPH 및 구조해석에 기반한 월파수류형 파력발전기 하부구조물 최적 설계)

  • Sung-Hwan An;Jong-Hyun Lee;Geun-Gon Kim;Dong-hoon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.992-1001
    • /
    • 2023
  • OWEC (Overtopping Wave Energy Converter) is a wave power generation system using the wave overtopping. The performance and safety of the OWEC are affected by wave characteristics, such as wave height, period. To mitigate this issue, optimal OWEC designs based on wave characteristics must be investigated. In this study, the environmental conditions along the Ulleungdo coast were used. The hydraulic efficiency of the OWEC was calculated using SPH (Smoothed Particle Hydrodynamics) by comparing 4 models that changed the substructure. As a result, it was possible to change the substructure. Through design optimization, a new truss-type structure, which is a substructure capable of carrying the design load, was proposed. Through a case study using member diameter and thickness as design variables, structural safety was secured under allowable stress conditions. Considering wave load, the natural frequency of the proposed structure was compared with the wave period of the relevant sea area. Harmonic response analysis was performed using wave with a 1-year return period as the load. The proposed substructure had a reduced response magnitude at the same exciting force, and achieved weight reduction of more than 32%.

Investigation on Natural Modes of Substructure of Wave Energy Converter with Overtopping Flow Device (나선암초형 월류파력발전 하부구조물의 모드특성 연구)

  • Kim, Byoung-Wan;Shin, Seung-Ho;Hong, Key-Yong;Choi, You-Su;Seo, Jeong-Oh;Ahn, Ike-Jang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-330
    • /
    • 2010
  • An efficient wave energy converter with new overtopping flow device on which spiral reefs are attached is proposed by Maritime and Ocean Engineering Research Institute in Korea and its candidate substructures such as monopile, tripod and jacket are designed. This study investigates modal characteristics of the substructures by analyzing natural frequencies and mode shapes. Based on the modal analysis results, relative strength, governing modes and some complementary design strategies of each candidate substructure are compared and discussed considering water depth conditions.

The Effect of Hydraulic Efficiency on the Design Variables of an Overtopping Wave Energy Converter (월파수류형 파력발전구조물의 상부 사면 설계변수에 따른 수력학적 효율 영향 연구)

  • An, Sung-Hwan;Kim, Geun-Gon;Lee, Jong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.168-174
    • /
    • 2022
  • In a wave power generation system, the overtopping system is known as an overtopping wave energy converter (OWEC). The performance of an OWEC is affected by wave characteristics such as height and period because its power generation system is sensitive to those characteristics; these, as well as wave direction, depend on the sea. As these characteristics vary, it is hard for the OWEC to produce power in a stable manner. Therefore, it is necessary to find an appropriate shape for an OWEC, according to the characteristics of the sea it is in. This research verified the effect of the design of the OWEC ramp on the hydraulic efficiency using the smoothed particle hydrodynamics (SPH) particle method. A total of 10 models were designed and used in simulations performed by selecting the design parameters of the ramp and changing the attack angle based on those parameters. The hydraulic efficiency was calculated based on the rate of discharged water obtained from the analysis result. The effect of each variable on the overtopping performance according to the shape of the ramp was then confirmed. In this study, we present suggestions for determining the direction for an appropriately shaped OWEC ramp, based on a specific sea area.

Patterns of Water Level Increase by Storm Surge and High Waves on Seawall/Quay Wall during Typhoon Maemi (태풍 매미 내습시 해일$\cdot$고파랑에 의한 호안$\cdot$안벽에서의 수위증가 패턴 고찰)

  • Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.22-28
    • /
    • 2005
  • We investigated the characteristics of the overflow/wave overtopping, induced by the storm surge and high waves in Masan bay and Busan Coast during Typhoon 'Maemi', which landed at the southeast coast of the Korean peninsula on September, of 2003, causing a severe inundation disaster. Characteristics of the water level, increase by the overflow / wave overtopping, were discussed in two patterns. One is the increase of water level in the region, located inside of a bay, like Masan fishing port, and the waves are relatively small. The other is in the open sea, in which the waves act directly, as on the seawall in Suyong bay. In the former region, the water level increase was affected by the storm surge, as well as the long period oscillation and waves. In Masan fishing port, about $80\%$ of the water level increase on the quay wall was caused by the storm surge. In the latter one, it was greatly affected by the wave run-up. In Suyong bay, about $90\%$ of the water level increase on the seawall was caused by the wave run-up.

Characteristics of Wave Pressures According to the Installation Location of the Caisson Superstructure under Regular Waves (규칙파 조건에서 케이슨 상치구조물의 설치위치에 따른 파압 특성)

  • Jun, Jae-Hyung;Lee, Suk-Chan;Kim, Do-Sam;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.82-92
    • /
    • 2022
  • In recent years, coastal and port structures have attempted to prevent wave-overtopping or provide waterfront areas by installing superstructures on the structural crowns. In general, in the design stage, the Goda formula acting on the front the structure is applied to calculate the wave pressure acting on the superstructure in consideration of the wave-runup of the design wave. However, the wave pressure exceeding the Goda wave pressure could generate depending on the installation location of the superstructure where the wave-overtopping occurs. This study analyzed the applicability of the Goda formula to the wave pressure calculation for the superstructure of the vertical structures through hydraulic model experiments and numerical simulations. Furthermore, this study investigated the magnitude of the wave pressure acting on the superstructure based on detailed numerical results. As a result, the wave pressure acting on the superstructure was up to 120% higher than the maximum wave pressure on the still water surface. In addition, the wave pressure increases exponentially with the Froude number computed by the overtopping water depth at the crown of the structure, and we proposed an empirical formula for predicting the wave pressure based on the Froude number.

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

The Estimated Model of Wave Overtopping Volume according to Wave Characteristic (파랑특성(波浪特性)에 따른 월파량산정(越波量算定)에 관한 연구(硏究))

  • Park, Sang Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.113-128
    • /
    • 1990
  • In recent years, various types of coastal protection scheme have been studied around the coastal region. Among them, so-called zonal protection systems are being watched with interest from various points of view. In this paper, wave overtopping rate from overflowing the vertical seawall is investigated by conducting two dimensional model on the horizontal bed experiment. Hereafter this system is referred to as a artificial reef system. One is the foundation to control wave height near the surfzone and the other is function to prevent coastal disaster by suppressing net overtopping rate. The main results obtained in this study are summarized as follows. 1) Wave attenuation taken place on the artificial reef can be predicted numerically by using energy dispersion model due to wave breaking proposed by Battjes. 2) To evaluate the wave overtopping rate from a vertical seadike on various coastal constructions by weir model, a numerical procedure for prediction of overtopping is confirmed.

  • PDF

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

Numerical Simulation of Wave Overtopping on a Porous Breakwater Using Boussinesq Equations (Boussinesq 방정식을 사용하여 투수방파제의 월파 수치해석)

  • Huynh, Thanh Thu;Lee, Changhoon;Ahn, Suk Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.326-334
    • /
    • 2017
  • We obtain height of waves overtopping on a porous breakwater using both the one-layer and two-layer Boussinesq equations. The one-layer Boussinesq equations of Lee et al. (2014) are used and the two-layer Boussinesq equations are derived following Cruz et al. (1997). For solitary waves overtopping on a porous breakwater, we find through numerical experiments that the height of waves overtopping on a low-crested breakwater (obtained by the Navier-Stokes equations) are smaller than the height of waves passing through a high-crest breakwater (obtained by the one-layer Boussinesq equations) and larger than the height of waves passing through a submerged breakwater (obtained by the two-layer Boussinesq equations). As the wave nonlinearity becomes smaller or the porous breakwater width becomes narrower, the heights of transmitting waves obtained by the one-layer and two-layer Boussinesq equations become closer to the height of overtopping waves obtained by the Navier-Stokes equations.