• Title/Summary/Keyword: wave-front analysis

Search Result 127, Processing Time 0.025 seconds

Statistical Analysis of Lightning-Induced Voltages on Subscriber Telecommunication Lines in Korea

  • Oh, Ho-Seok;Park, Dong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.148-152
    • /
    • 2008
  • This paper describes the characteristics of lightning-induced voltages on subscriber telecommunication lines in Korea. Lightning parameters such as peak voltage, rise time, decay time, and steepness of the wave front were statistically analyzed from the measured results obtained using a waveform memory system. An induced voltage measurement system was also developed and installed at 286 sites in Korea to collect the induced voltage data. The distributions of lightning-induced voltages were also analyzed using these data.

Analysis of Corneal Higher-order Aberrations after Myopic Refractive Surgery

  • Kim, Jeong-mee
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.72-77
    • /
    • 2019
  • This study was performed to analyze the optical aberrations of the cornea induced by myopic refractive surgery. Corneal total higher-order aberrations, spherical aberration and coma for 4-mm and 6-mm pupils were measured using a wave-front analyzer. The amount of aberrations of the oblate corneal optics by the achieved correction was found to be larger than for the prolate corneal shape with complete eye, in an emmetropia control group. The change in corneal shape acts as an optical factor that degrades the quality of the retinal image; it seems to be one of the important factors related to quality of vision.

Experimental study of Internal pressure variation of the TTX traveling in conventional tunnels (틸팅 열차의 터널주행 시 실내 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Lee, Young-Bin;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2114-2119
    • /
    • 2008
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear nose each other. Because the compression wave and expansion wave have interactions with the train in a tunnel repeatedly, the internal pressure of the train is dramatically varied. And this pressure variation gives passengers discomfort like ear-ache. In this paper, we had measured the internal pressure variation of TTX developed and being on Test-Running in Honam line and made an analysis of pressure variation rate. As a result, the internal pressure variation was different as to the length of tunnel. Though the entering velocity of TTX is similar on test tunnels, on the short tunnel, the pressure drop was lower then that of the long tunnel. And it was expected that the rates of internal pressure variation would be exceeded the limits on 160km/h entering velocity.

  • PDF

A Numerical Study on Effects of Flow Analysis with Flow Control Valve on Turbine of OWC Type Wave Power Generator (유량 조절 밸브가 탑재된 진동수주형 파력발전장치의 터빈 내 유동해석을 위한 수치해석 연구)

  • Ro, Kyoung-Chul;Oh, Jae-Won;Kim, Gil-won;Lee, Jung-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.801-808
    • /
    • 2021
  • In this paper, a numerical analysis was conducted on the effect of the flow control valve of a oscillation water column(OWC) type wave power generator turbine. The OWC wave power turbine operates with compressed air in the air chamber according to the change of wave height. When the wave height changes rapidly, a flow control valve is required due to overload of the turbine and reduced efficiency. Therefore, in this paper, a flow control valve with an opening angle of 60 degrees was installed in the front of the turbine, and the pressure drop, torque, and overall performance were calculated according to the change of turbine RPM and flow rate of turbine inlet. In conclusion, the flow control valve with an opening angle of 60 degrees affects when the turbine rotates at low rotation and the inlet flow rate is large. But it does not have a significant effect on overall turbine performance and it is necessary to find the optimal angle in the future works.

Variation Characteristics of Irregular Wave Fields around 2-Dimensional Low-Crested-Breakwater (2차원저천단구조물(LCS)의 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Choi, Goon Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.356-367
    • /
    • 2019
  • This study evaluates the variation characteristics of irregular wave fields for two-dimensional Low-Crested Structure (LCS) by olaFlow model based on the two-phases flow by numerical analysis. The numerical results of olaFlow model are verified by comparing irregular wave profile of target wave spectrum and measured one, and their spectra. In addition, spacial variation of irregular wave spectrum, wave transmission ratio, root-mean square wave height, time-averaged velocity and time-averaged turbulent kinetic energy by two-dimensional LCS are discussed numerically. The time-averaged velocity, one of the most important numerical results is formed counterclockwise circulating cell and clockwise nearshore current on the front of LCS, and strong uni-directional flow directing onshore side around still water level.

Reliability Analysis of Sloped Coastal Structures against Random Wave Overtopping (월파에 대한 경사식 해안 구조물의 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.214-223
    • /
    • 2003
  • A reliability analysis is straightforwardly applied to the sloped coastal structures against the random wave overtopping. A reliability function can be directly derived from a empirical formula in which may take into account many variables associated with the random wave overtopping. The probability of failure exceeded the allowable overtopping discharge can be evaluated as a function of dimensionless crest height with some reasonable statistical properties and distribution functions of each random variable. Some differences of probabilities of failure occurred from variations of the slopes of structures as well as types of armour are investigated into quantitatively. Additionally, the effects of the crest width of units placed in front of the concrete cap on the probability of failure may be analyzed. Finally, the sensitivity analyses are carried out with respect to the uncertainties of random variables. It is found that the overall characteristics similar to the known experimental results are correctly represented in this reliability analyses. Also, it should be noted that the probabilities of failure may be quantitatively obtained for several structural and hydraulic conditions, which never assess in the deterministic design method. Thus, it may be possible for determination on the crest height of sloped coastal structures to consider the probability of failure of wave overtopping, by which may be increased the efficiency of practical design.

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

A Plastic Analysis of Structures under the Impact Loading (충격하중(衝擊荷重)을 받는 구조물(構造物)의 소성(塑性)모델에 따른 거동분석(擧動分析))

  • Ahn, Byoung Ki;Lee, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.21-33
    • /
    • 1992
  • Under the intense-impulsive loading, structures are subjected to the wide range of pressures at an instantaneous time. The constitutive laws capable to describe the material behavior under the extreme pressure as well as the low pressure are necessary for the analysis of the structural behavior under the intense -impulsive loadings. In this study, two plastic models, the pressure independent Von-Mises model and the pressure dependent Drucker-Prager model, are employed for the wave propagation analysis. Governing equations of this study are conservation equations of momentum and mass in Lagrangian coordinate system which is fixed to the material. Due to the shock-front which violates the continuity assumptions inherent in the differential equations numerical artificial viscosity is used to spread the shock front over several computational zones. These equations are solved by Finite Difference Method with discretized time and space coordinates. The associate normality flow rule as a plastic theory is implemented to find the plastic strains.

  • PDF

Numerical Analysis of the Depression Effect of Hybrid Breaker on the Run Up Height due to Tsunami based on the Modified Leading Depression N (LDN) Wave Generation Technique (Leading Depression N (LDN) Wave 조파기법에 기초한 Hybrid Breaker의 지진해일 처오름 저감효과 수치해석)

  • Cho, Yong Jun;Na, Dong Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.38-49
    • /
    • 2015
  • Past study of tsunami heavily relied on the numerical modelling using 2D Boussinesq Eq. and Solitary wave. Lately, based on the fact that numerically simulated run up heights based on solitary wave are somewhat smaller than the measured one, Leading Depression N (LDN) Wave has been elaborated, which can account the advancement of a shore line before tsunami strikes a shore. Thereafter it is reported that more accurate simulation can be possible once LDN is deployed. On the other hand, there were numerous reports indicating that stable LDN wave can't be sustained in the hydraulic model test. These conflicts between the hydraulic model tests and numerical results have their roots on the assumption made in the derivation of Boussinesq type wave model such as that wave nonlinearity is equally balanced with wave dispersiveness. Hence, in the numerical simulation based on the Boussinesq type wave model, wave dispersiveness is inevitably underestimated, especially in deep water. Based on this rationale, we developed the modified methodology for the generation of stable LDN wave in the 3D numerical wave flume, and proceeded to numerically analyze the depression effect of Hybrid Breaker on the run up height due to tsunami using the Navier Stoke Equation. The verification of newly proposed wave model in this study was carried out using the run up height from the hydraulic model test. It was shown that Hybrid Breaker consisting of three water chamber and slope at its front can reduce 13% of run up height for H = 5m, and 10% of run up height for H = 6m.

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.