DOI QR코드

DOI QR Code

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure

파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션

  • Lee, Kwang-Ho (Dept. of Energy Resources and Plant Eng., Kwandong Univ.) ;
  • Baek, Dong-Jin (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Tae-Hyung (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Bae, Ki-Seong (Dept. of Ocean Civil Eng., Gyeongsang Univ.)
  • 이광호 (관동대학교 에너지자원플랜트공학과) ;
  • 백동진 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설공학과) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 배기성 (경상대학교 해양토목공학과)
  • Received : 2014.02.08
  • Accepted : 2014.02.27
  • Published : 2014.02.28

Abstract

Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

해안 및 해양구조물 하부의 해저지반에 고파랑이 장시간 작용하는 경우 과잉간극수압(진동과잉간극수압과 잔류과잉간극수압의 합)이 크게 발생할 수 있고, 이어지는 유효응력의 감소에 따라 해저지반에 액상화가 발생될 수 있다. 일단, 지반액상화가 발생 및 진행되면 구조물의 침하 혹은 전도에 의해 종국적으로 구조물이 파괴될 가능성이 높아진다. 특히, 중력식구조물이 설치된 하부지반내에서는 파작용에 의한 큰 과잉간극수압과 작은 유효응력으로 부터 발생되는 지반액상화의 여부를 정확히 예측할 필요가 있고, 이러한 지반의 동적거동 특성은 설계에 충분히 반영되어야 한다. 본 연구에서는 2차원수치파동수로를 불규칙파동장으로 확장한 수치해석법을 적용하여 해저지반상 및 구조물의 표면상에서 시간변동의 동파압과 유속에 의한 전단응력을 산정하고, 그 결과를 지반의 동적거동을 정밀하게 재현할 수 있는 해저지반응답용의 수치해석프로그램 FLIP(Finite element analysis LIquefaction Program)에 입력치로 적용하여 해저지반내에서 과잉간극수압 및 유효응력의 시공간적인 변화, 이로 인한 액상화, 그리고 지반의 시간변형과 구조물의 시간변위를 정량적으로 평가한다. 이로부터 해저면상에서 전단응력을 고려한 경우 구조물 전면의 하부해저지반에서 액상화 가능성을 확인할 수 있었고, 액상화된 토립자는 흐름에 저항력을 상실하므로 세굴로 이어질 것으로 판단된다. 따라서, 태풍시 고파랑의 작용이 장시간 지속되는 경우 구조물의 전면에서는 지반액상화로 인한 지반강도의 현저한 저하로 구조물의 진동변위가 더욱 크게 발생되고, 더불어 구조물의 안정성에 영향을 미칠 것으로 예상된다.

Keywords

References

  1. Biot, M.A. (1941). General theory of three-dimensional consolidation, J. of Applied Physics, 12, 155-165. https://doi.org/10.1063/1.1712886
  2. CDIT(2001). Research and development of numerical wave channel(CADMAS-SURF), CDIT library, 12, Japan.
  3. Chang, S.C., Chien, L.K., Lin, J.G. and Chiu, Y.F. (2007). An experimental study on progressive wave-induced stresses duration in seabed soil, J. of Marine Science and Technology, 15(2), 129-140.
  4. Cheng, L., Sumer, B.M. and Fredsoe, J. (2001). Solutions l of pore pressure build up due to progressive waves, Intl. J. for Numerical and Analytical Methods in Geomechanics, 25, 885-907. https://doi.org/10.1002/nag.159
  5. De Alba P., Seed, H.B. and Chan, C.K. (1976). Sand liquefaction in large-scale simple shear tests, J. of Geotechnical Division, ASCE, 102, 909-928.
  6. Goda, Y. (1985). Random sea and design of maritime structures, Univ. of Tokyo Press, 323pp..
  7. Hirt, C.W. and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries, J. of Computational Physics, 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  8. Hsu, J.R.C. and Jeng, D.S. (1994). Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness, Intl. J. for Numerical Analytical Methods in Geomechanics, 18(11), 785-807. https://doi.org/10.1002/nag.1610181104
  9. Hur, D.S., Kim, C.H. and Yoon, J.S. (2010). Numerical study on the interaction among a nonlinear wave, composite breakwater and sandy seabed, Coastal Eng., 57, 917-930. https://doi.org/10.1016/j.coastaleng.2010.05.010
  10. Iai, S., Matsunaga, Y. and Kameoka, T. (1992a). Strain space plasticity model for cyclic mobility, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Eng., 32(2), 1-15.
  11. Iai, S., Matsunaga, Y. and Kameoka, T. (1992b). Analysis of undrained cyclic behavior of sand under anisotropic consolidation, Soils and Foundation, Japanese Society of Soil Mechanics and Foundation Eng., 32(2), 16-20. https://doi.org/10.3208/sandf1972.32.2_16
  12. Imase, T., Maeda, K. and Miyake, M. (2012). Destabilization of a caisson-type breakwater by scouring and seepage failure of the seabed due to a tsunami, ICSE6-128, Paris, 807-814.
  13. Jeng, D.S. (1997). Wave-induced seabed response in front of a breakwater, PhD thesis, Univ. of Western Australia.
  14. Jeng, D.S. (2008). Effects of wave on residual pore pressure in marine sediments, The Open Civil Eng. J., 2, 63-74. https://doi.org/10.2174/1874149500802010063
  15. Jeng, D.S, Seymour, B. and Li, J. (2006). A new approximation for pore pressure accumulation in marine sediment due to water waves, Research Report No.R868, The Univ. of Sydney, Australia, 28pp..
  16. Jeng, D.S. and Hsu, J.R.C. (1996). Wave-induced soil response in a nearly saturated seabed of finite thickness, Geotechnique, 46(3), 427-440. https://doi.org/10.1680/geot.1996.46.3.427
  17. Kianoto, T. and Mase, H. (1999). Boundary-layer theory for anisotropic seabed response to sea waves, J. of Waterway, Port, Coastal and Ocean Eng., ASCE, 125(4), 187-194. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(187)
  18. Lee, K.H., Park, J.H., Cho, S. and Kim, D.S. (2013). Numerical simulation of irregular airflow in OWC wave generation system considering sea water exchange, Journal of Korean Society of Coastal and Ocean Engineers, 25(3), 128-137. https://doi.org/10.9765/KSCOE.2013.25.3.128
  19. Li, J. and Jeng, D.S. (2008). Response of a porous seabed around breakwater heads, Ocean Eng., 35, 864-886. https://doi.org/10.1016/j.oceaneng.2008.01.021
  20. Madsen, O.S. (1978). Wave-induced pore pressure and effective stresses in a porous bed, Geotechnique, 28, 377-393. https://doi.org/10.1680/geot.1978.28.4.377
  21. Mase, H., Sakai, T. and Sakamoto, M. (1994). Wave-induced porewater pressures and effective stresses around breakwater, Ocean Eng., 21(4), 361-379. https://doi.org/10.1016/0029-8018(94)90010-8
  22. McDougal, W.G., Tsai, Y.T., Liu, P.L.-F. and Clukey, E.C. (1989). Wave-induced pore water pressure accumulation in marine soils, J. of Offshore Mechanics and Arctic Eng., ASME, 111(1), 1-11. https://doi.org/10.1115/1.3257133
  23. Mei, C.C. and Foda, M.A. (1981). Wave-induced response in a fluid-filled poroelastic solid with a free surface - A boundary layer theory, Geophysical J. of the Royal Astrological Society, 66, 597-631. https://doi.org/10.1111/j.1365-246X.1981.tb04892.x
  24. Miyamoto, J., Sassa, S. and Sekiguchi, H. (2004). Progressive solidification of a liquefied sand layer during continued wave loading, Geotechnique, 54(10), 617-629. https://doi.org/10.1680/geot.2004.54.10.617
  25. MOLIT (2010). Final report about prevention technology for coastal erosion.
  26. Okusa, S. (1985). Wave-induced stresses in unsaturated submarine sediments, Geotechnique, 32(3), 235-247.
  27. Ozutsmi, O., Sawada, S., Iai, S., Takeshima, Y., Sugiyama, W. and Shimasu, T. (2002). Effective stress analysis of liquefactioninduced deformation in river dikes, J. of Soil Dynamics and Earthquake Eng., 22, 1075-1082. https://doi.org/10.1016/S0267-7261(02)00133-1
  28. Sakakiyama, T. and Kajima, R. (1992). Numerical simulation of nonlinear wave interaction with permeable breakwater, In: Proceedings of the 22nd ICCE, ASCE, 1517-1530.
  29. Sassa, S. and Sekiguchi, H. (1999). Analysis of wave-induced liquefaction of beds of sand in centrifuge, Geotechnique, 49(5), 621-638. https://doi.org/10.1680/geot.1999.49.5.621
  30. Sassa, S. and Sekiguchi, H. (2001). Analysis of wave-induced liquefaction of sand beds, Geotechnique, 51(12), 115-126. https://doi.org/10.1680/geot.2001.51.2.115
  31. Sassa, S., Sekiguchi, H. and Miyamoto, J. (2001). Analysis of progressive liquefaction as a moving-boundary problem, Geotechnique, 51(10), 847-857. https://doi.org/10.1680/geot.2001.51.10.847
  32. Sawada, S., Ozutsumi, O. and Iai, S. (2000). Analysis of liquefaction induced residual deformation for two types of quay wall:analysis by "FLIP", Proceedings of the 12th World Conference on Earthquake Eng.(Auckland), No.2486.
  33. Seed, H.B. and Rahman, M.S. (1978). Wave-induced pore pressure in relation to ocean floor stability of cohesionless soil, Marine Geotechnology, 3(2), 123-150. https://doi.org/10.1080/10641197809379798
  34. Seed, H.B., Martin, P.O. and Lysmer, J. (1975). The generation and dissipation of pore water pressure during soil liquefaction, Report EERC 75-26, Univ. of California, Berkeley, California.
  35. Sekiguchi, H., Kita, K. and Okamoto, O. (1995). Response of poroelastoplastic beds to standing waves, Soil and Foundations, 35(3), 31-42. https://doi.org/10.3208/sandf.35.31
  36. Sumer, B.M. and Fredsøe, J. (2002). The mechanics of scour in the marine environment, World Scientific, 536pp.
  37. Swart, D.H. (1976). Coastal sediment transport computation of longshore transport, Delft Hydraulic Lab., Report No.R968, Part 1.
  38. Towata, I. and Ishihara, K. (1985). Modeling soil behaviour under principal stress axes rotation, Proceeding of the 5th Intl. Conference on Numerical Method in Geomechanics, 1, 523-530.
  39. Ulker, M.B.C, Rahman, M.S. and Guddati, M.N. (2010). Waveinduced dynamic response and instability of seabed around caisson breakwater, Ocean Eng., 37, 1522-1545. https://doi.org/10.1016/j.oceaneng.2010.09.004
  40. Yamamoto, T., Koning, H., Sllmejjer, H. and Van Hijum, E. (1978). On the response of a poroelastic bed to water waves, J. of Fluid Mechanics, 87, 193-206. https://doi.org/10.1017/S0022112078003006
  41. Ye, J., Jeng, D., Liu, P.L.-F., Chan, A.H.C, Ren, W and Changqi, Z. (2014). Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation, Coastal Eng., 85, 72-86. https://doi.org/10.1016/j.coastaleng.2013.08.003
  42. Yuhi, M. and Ishida, H. (2002). Simplified solution of waveinduced seabed response in anisotropic seabed, J. of Waterway, Port, Coastal and Ocean Eng., ASCE, 128(1), 46-50. https://doi.org/10.1061/(ASCE)0733-950X(2002)128:1(46)

Cited by

  1. Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment vol.26, pp.6, 2014, https://doi.org/10.9765/KSCOE.2014.26.6.367
  2. Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) vol.26, pp.3, 2014, https://doi.org/10.9765/KSCOE.2014.26.3.160
  3. Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) vol.26, pp.3, 2014, https://doi.org/10.9765/KSCOE.2014.26.3.174
  4. Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data vol.30, pp.7, 2014, https://doi.org/10.7843/kgs.2014.30.7.27
  5. Bore-induced Dynamic Responses of Revetment and Soil Foundation vol.27, pp.1, 2015, https://doi.org/10.9765/KSCOE.2015.27.1.63