• Title/Summary/Keyword: wave spectrum

Search Result 794, Processing Time 0.032 seconds

Infrared Detector Using Pyroelectrics

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.147-150
    • /
    • 2006
  • The thin film of PbTiO3 is fabricated at substrate temperature of 100-150$^{\circ}C$. The infrared spectrum of the ferroelectric thin film is measured as temperature of thermal treatment, 400 - 550$^{\circ}C$. According to infrared spectrum analysis, there are absorption bands at a nearby wave number of 1000 $\sim$ 400 cm-l and the thin film treated by temperature of 550$^{\circ}C$ has absorption bands of wave number 500 cm-l similar to infrared response property of PbTiO3 powder. The pyroelectric infrared detector is fabricated after deposition of Pt and PbTiO3 thin film on Si wafer by sputtering machine. The measured remnant polarization are 11.5-12.5$\muC/cm2$, breakdown electric field Ec is 100-120KV/cm, and voltage responsivity and detectivity is -280V/W, -108cm Hz/W.

A Numerically Controlled Oscillator with a Fine Phase Tuner and a Rounding Processor

  • Lim, In-Gi;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.657-660
    • /
    • 2004
  • We propose a fine phase tuner and a rounding processor for a numerically controlled oscillator (NCO), yielding a reduced phase error in generating a digital sine waveform. By using the fine phase tuner presented in this paper, when the ratio of the desired sine wave frequency to the clock frequency is expressed as a fraction, an accurate adjustment in representing the fractional value can be achieved with simple hardware. In addition, the proposed rounding processor reduces the effects of phase truncation on the output spectrum. Logic simulation results of the NCO using these techniques show that the noise spectrum and mean square error (MSE) for eight output bits of a 3.125 MHz sine waveform are reduced by 8.68 dB and 5.5 dB, respectively, compared to those of the truncation method, and 2.38 dB and 0.83 dB, respectively, compared to those of Paul's scheme.

  • PDF

A Study on Mathematical Modeling of Forcing Function for the Piping Vibration of Petrochemical Plant Design (플랜트 설계 시 배관진동을 유발하는 가진 함수의 수학적 모델링)

  • 민선규;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.591-595
    • /
    • 1997
  • In analysis of piping vibration of petrochemical plant, the forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used for the system with rotary equipments. Mechanical driving frequencies, wave functions, and response spectrum are used for reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, for the spray injection case inside the pipe, forcing function was modeled, in which two different fluids are distributed uniformly. To confirm the results, the scheme used for the forcing function was applied for real piping system. The vibration mode of the real system was consistent with the 4th mode obtained by simulation using the forcing function formulated in this study.

  • PDF

A study on the measurement of Blood flow-turbulence (혈류의 Flow-Turbulence 측정에 관한 연구)

  • Ko, Yeon-Soon;Kang, Chung-Shin;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.294-296
    • /
    • 1988
  • The tomographic imaging that employs ultrasonic echos has achieved outstanding advances in recent years, and today, ultrasonic diagnostic equipment has become the tool that is absolutely indispensible for clinical operations. Meanwhile, the feasility of measuring blood flow in the heart and vessels by the use of Doppler effect in ultrasonic waves is a well known fact. With respect to the method of blood flow measurment, there are two kinds which employ continous wave and pulse wave doppler system. In this paper, we describe the measurment of Blood flow-turbulence using general purpose Digital Signal Processing Board which had been implemented for the purpose of real-time spectrum analyser. Blood flow-turbulence means the blood-flow behavior. And it's value proportional to the spectrum variance. Therefore mean frequency of blood signal and variance provide useful diagnostic information. We have applied to the major arteries and vein, obtained the information about the time dependent blood-flow behavior.

  • PDF

A study on the development of CW(Continuous-Wave) Doppler System using FFT (FFT를 이용한 연속초음파 도플러 장치에 관한 연구)

  • Lee, Dae-Hyung;Kang, Chung-Shin;Park, Sei-Hyun;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.709-712
    • /
    • 1988
  • Ultrasonic Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. CW(Continuous-Wave) Doppler System uses quadrature detection and phase rotation method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time-domain, had been fabricated. But time-domain analyzing such as audio evaluation and zero- crossing detection for instantaneous and mean frequnecy measurement do not provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency-domain technique to improve system performance. In this paper, we describe a unit which is composed of CW Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of Blood signal.

  • PDF

A Simulation of Forcing Function for the Piping Vibration in Petrochemical Plants (석유화학 플랜트에서 배관 가진 함수의 시뮬레이션에 관한 연구)

  • 민선규;최명진;김경훈
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • For the simulation of piping vibrations in petrochemical plants, forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used to simulate rotary equipment. Mechanical driving frequencies, wave functions, and response spectrum are used to simulate reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, the general suggestions for forcing functions were reviewed and proposed the forcing function to simulate the spray injection system inside the pipe in which two different fluids are distributed uniformly. To confirm the results, the scheme was applied for a real piping system. The vibration mode of the real system was consistent with the 4th mode (26.725 Hz) obtained by simulation using the forcing function presented in this study.

  • PDF

AE Signals Characteristics from Fracture by Type of CFRP Stacking Structure (CFRP 적층 형태에 따른 파괴시 음향방출 신호특성)

  • 남기우;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2002
  • Damage process of CFRP laminates was characterized by Acoustic Emission (AE). The main objective of this study is to determine if the sources of AE in CERP laminates could be identified from the characteristics of the waveform signals recorded during monotonic tensile test. The time history and power spectrum of each individual wave signal recorded during test were examined and classified according to their special characteristics. The wave from and frequency of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pull-out and fiber fracture as load is increased. Four distinct types of signals were observed regardless of specimen condition. The result showed that the AE method could be effectively used for analysis of fracture mechanism in CFRP laminates.

Steady-State Solution for Solar Wind Electrons by Spontaneous Emissions

  • Kim, Sunjung;Yoon, Peter H.;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.44.2-44.2
    • /
    • 2016
  • The solar wind electrons are made of three or four distinct components, which are core Maxwellian background, isotropic halo, and super-halo (and sometimes, highly field-aligned strahl component which can be considered as a fourth element). We put forth a steady-state model for the solar wind electrons by considering both the steady-state particle and wave kinetic equations. Since the steady-state solar wind electron VDFs and the steady-state wave fluctuation spectrum are related to each other, we also investigate the complete fluctuation spectra in the whistler and Langmuir frequency ranges by considering halo- and superhalo-like model electron VDFs. It is found that the energetic electrons make important contributions to the total emission spectrum. Based on this, we complete the steady-state model by considering both the whistler and Langmuir fluctuations. In particular, the Langmuir fluctuation plays an important role in the formation and maintenance of nonthermal electrons.

  • PDF

Jamming Effects of GPS L1 C/A Signal by Knife-Edge Diffraction Loss at Seoul Metropolitan Northwestern Region (회절을 고려한 수도권 서북부 지역에서 GPS L1 C/A 신호의 재밍영향분석)

  • Yoo, Seungsoo;Kim, Sun Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.757-763
    • /
    • 2013
  • This study discusses the multiple knife-edge diffraction loss with the receiver and jammer located in the Seoul metropolitan northwestern region. The considered positioning and jamming signals are the GPS L1 C/A signal and several jamming signals such as the wideband Gaussian noise, matched spectrum, and continuous wave signals. To calculate the accurate diffraction effects, the 3-dimensional topography data at the Seoul metropolitan northwestern region was used.

Development of nationwide amplification map of response spectrum for Japan based on station correction factors

  • Maruyama, Yoshihisa;Sakemoto, Masaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • In this study, the characteristics of site amplification at seismic observation stations in Japan were estimated using the attenuation relationship of each station's response spectrum. Ground motion records observed after 32 earthquakes were employed to construct the attenuation relationship. The station correction factor at each KiK-net station was compared to the transfer functions between the base rock and the surface. For each station, the plot of the station correction factor versus the period was similar in shape to the graphs of the transfer function (amplitude ratio versus period). Therefore, the station correction factors are effective for evaluating site amplifications considering the period of ground shaking. In addition, the station correction factors were evaluated with respect to the average shear wave velocities using a geographic information system (GIS) dataset. Lastly, the site amplifications for specific periods were estimated throughout Japan.