• Title/Summary/Keyword: wave propagation velocity

Search Result 412, Processing Time 0.026 seconds

Discontinuous Grids and Time-Step Finite-Difference Method for Simulation of Seismic Wave Propagation (지진파 전파 모의를 위한 불균등 격자 및 시간간격 유한차분법)

  • 강태섭;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.50-58
    • /
    • 2003
  • We have developed a locally variable time-step scheme matching with discontinuous grids in the flute-difference method for the efficient simulation of seismic wave propagation. The first-order velocity-stress formulations are used to obtain the spatial derivatives using finite-difference operators on a staggered grid. A three-times coarser grid in the high-velocity region compared with the grid in the low-velocity region is used to avoid spatial oversampling. Temporal steps corresponding to the spatial sampling ratio between both regions are determined based on proper stability criteria. The wavefield in the margin of the region with smaller time-step are linearly interpolated in time using the values calculated in the region with larger one. The accuracy of the proposed scheme is tested through comparisons with analytic solutions and conventional finite-difference scheme with constant grid spacing and time step. The use of the locally variable time-step scheme with discontinuous grids results in remarkable saving of the computation time and memory requirement with dependency of the efficiency on the simulation model. This implies that ground motion for a realistic velocity structures including near-surface sediments can be modeled to high frequency (several Hz) without requiring severe computer memory

  • PDF

Theoretical and experimental analysis of wave propagation in concrete blocks subjected to impact load considering the effect of nanoparticles

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.711-718
    • /
    • 2017
  • Nanotechnology is a new filed in concrete structures which can improve the mechanical properties of them in confronting to impact and blast. However, in this paper, a mathematical model is introduced for the concrete models subjected to impact load for wave propagation analysis. The structure is simulated by the sinusoidal shear deformation theory (SSDT) and the governing equations of the concrete model are derived by energy method and Hamilton's principle. The silicon dioxide ($SiO_2$) nanoparticles are used as reinforcement for the concrete model where the characteristics of the equivalent composite are determined using Mori-Tanaka approach. An exact solution is applied for obtaining the maximum velocity of the model. In order to validate the theoretical results, three square models with different impact point and Geophone situations are tested experimentally. The effect of different parameters such as $SiO_2$ nanoparticles volume percent, situation of the impact, length, width and thickness of the model as well as velocity, diameter and height of impactor are shown on the maximum velocity of the model. Results indicate that the theoretical and experimental dates are in a close agreement with each other. In addition, using from $SiO_2$ nanoparticles leads to increase in the stiffness and consequently maximum velocity of the model.

The Determination of Group Velocity of Lamb Wave So Mode in Composite Plates with Anisotropy (이방성 복합재료 판에서 램파 $S_0$ 모드의 군속도 결정)

  • Rhee, Sang-Ho;Lee, Jeong-Ki;Lee, Jung-Ju
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.239-245
    • /
    • 2006
  • Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not accorded with the theoretical group velocities as calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude in addition to direction. In this study, $S_0$ mode phase velocity dispersion corves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity are calculated from the slowness surface. The theoretically determined group velocity, which is calculated from the slowness surface, Is compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.

Estimation of Hydraulic Conductivity of Soils Based on Biot's Theory of Wave Propagation (Biot 파동전파 이론을 이용한 지반의 투수계수 산정)

  • Song, Chung R.;Kim, Jinwon;Koocheki, Kianoosh
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.7-16
    • /
    • 2020
  • This study presents an acoustic technique to estimate the hydraulic conductivity of soils. Acoustic attenuation and propagation velocity spectra were measured for dry and saturated sandy specimens to confirm that the relationship between Biot's characteristic frequency and its associated hydraulic conductivity exists only for saturated soils. From the experiments presented in this paper, both attenuation-based and propagation-velocity-based techniques resulted in almost identical characteristic frequencies for saturated soils. The propagation velocity based measurements, however, show a a a slightly clearer trend compared to the attenuation based measurements. The results also show that the acoustically estimated hydraulic conductivities of soils agree well with constant head laboratory test results, demonstrating that this acoustic technique can be a useful nondestructive tool to estimate the hydraulic conductivity of sandy or silty soils.

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF

Propagation Characteristics of Ultrasonic Wave of Surface Hardened SCM440 and SCM415 Steels (SCM440, SCM415강의 표면강화에 따른 초음파의 전파특성)

  • Park, Eun-Su;Gang, Gye-Myeong;Kim, Seon-Jin;Jang, Sun-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.538-545
    • /
    • 1993
  • By using propagation characteristics of ultrasonic surface wave, the depth of the surface hardened layer of SCM440 steel with different high frequency induction heat treatments was measured and the same was done on the carburized SCM415 steel. The propagation velocity of surface wave was constant and independent of frequency in t.he specimens with identical microstructure, it was, however, decreased by 59m/s in the hardened layers compared to the unhardened part. From t.he relationship between the effective case depth and the wave length of surface wave, the depth of the hardened layer could be measured and evaluated nondestructively for both induction hardened and carburized steels.

  • PDF

Study on the propagation mechanism of stress wave in underground mining

  • Liu, Fei;Li, Lianghui
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • For the influence of the propagation law of stress wave at the coal-rock interface during the pre-blasting of the top coal in top coal mining, the ANSYS-LS/DYNA fluid-solid coupling algorithm was used to numerical calculation and the life-death element method was used to simulate the propagation of explosion cracks. The equation of the crushing zone and the fracturing zone were derived. The results were calculated and showed that the crushing radius is 14.6 cm and the fracturing radius is 35.8 cm. With the increase of the angles between the borehole and the coal-rock interface, the vibration velocity of the coal particles and the rock particles at the interface decreases gradually, and the transmission coefficient of the stress wave from the coal mass into the rock mass decreases gradually. When the angle between the borehole and the coal-rock interface is 0°, the overall crushing degree is about 11% and up to the largest. With the increase of the distance from the charge to the coal-rock interface, the stress wave transmission coefficient and the crushing degree of the coal-rock are gradually decreased. At the distance of 50 cm, the crushing degree of the coal-rock reached the maximum of approximately 12.3%.

Efficient 3D Acoustic Wave Propagation Modeling using a Cell-based Finite Difference Method (셀 기반 유한 차분법을 이용한 효율적인 3차원 음향파 파동 전파 모델링)

  • Park, Byeonggyeong;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this paper, we studied efficient modeling strategies when we simulate the 3D time-domain acoustic wave propagation using a cell-based finite difference method which can handle the variations of both P-wave velocity and density. The standard finite difference method assigns physical properties such as velocities of elastic waves and density to grid points; on the other hand, the cell-based finite difference method assigns physical properties to cells between grid points. The cell-based finite difference method uses average physical properties of adjacent cells to calculate the finite difference equation centered at a grid point. This feature increases the computational cost of the cell-based finite difference method compared to the standard finite different method. In this study, we used additional memory to mitigate the computational overburden and thus reduced the calculation time by more than 30 %. Furthermore, we were able to enhance the performance of the modeling on several media with limited density variations by using the cell-based and standard finite difference methods together.

Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.427-436
    • /
    • 2017
  • Concrete technologists have used ultrasonic pulse velocity test for decades to evaluate the properties of concrete. However, the presented research work focuses on the use of ultrasonic pulse velocity test to study the degradation in steel-concrete bond subjected to increasing loading. A detailed experimental investigation was conducted by testing five identical beam specimens under increasing loading. The loading was increased from zero till failure in equal increments. From the experimentation, it was found that as the reinforced concrete beams were stressed from control unloaded condition till complete failure, the propagating ultrasonic wave velocity reduced. This reduction in wave velocity is attributed to the initiation, development, and propagation of internal cracking in the concrete surrounding the steel reinforcement. Using both direct and semidirect methods of testing, results of reduction in wave velocity with evidence of internal cracking at steel-concrete interface are presented. From the presented results and discussion, it can be concluded that the UPV test method can be successfully employed to identify zones of poor bonding along the length of reinforced concrete beam. The information gathered by such testing can be used by engineers for localizing repairs thereby leading to saving of time, labor and cost of repairs. Furthermore, the implementation strategy along with real-world challenges associated with the application of the proposed technique and area of future development have also been presented.

A Study on the Generation for the Design Waves with a Numerical Wave Tank (수치파 수조를 이용한 설계파 생성에 관한 연구)

  • Jeong, Seong-Jae;An, Heui-Chun;Shin, Jong-Keun;Choi, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.205-211
    • /
    • 2005
  • In this study, a new numerical procedure for the generation of a nonlinear tailored group of waves is presented. The procedure is based on the transient wave group technique. In order to integrate the nonlinearity during the wave propagation in the computational method, the Navier-Stokes equations are applied as governing equations. The governing equations are discretized by finite volume approximation. The deformation of the free water surface in each time step is pursued with a moving grid. A two-dimensional, numerical wave tank for the simulation of the wave propagation is developed and tested in detail. The numeric results are compared first with analytical wave theories and with measurements, in order to examine the correctness of the numerical wave tank. Wave surface elevation and associated fields of velocity and pressure are numerically computed and compared with measurements. Very good agreements show up.