• Title/Summary/Keyword: wave operator

Search Result 97, Processing Time 0.027 seconds

Digital Image Processing of Side Scan Sonar for Underwater Man-made Structure (수중 인공구조물에 대한 사이드스캔소나 탐사자료의 영상처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Kim, Kwang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.344-354
    • /
    • 2009
  • Side scan sonar using acoustic wave plays a very important role in the underwater, sea floor, and shallow marine geologic survey. In this study, we have acquired side scan sonar data for the underwater man-made structures, artificial reefs and fishing grounds, installed and distributed in the survey area. We applied digital image processing techniques to side scan sonar data in order to improve and enhance an image quality. We carried out digital image processing with various kinds of filtering in spatial domain and frequency domain. We tested filtering parameters such as kernel size, differential operator, and statistical value. We could easily estimate the conditions, distribution and environment of artificial structures through the interpretation of side scan sonar.

ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS

  • Kim, Kyeong-Hun;Lim, Sungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.929-967
    • /
    • 2016
  • Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu=-(-{\Delta})^{\beta}u,\;{\alpha}{\in}(0,2),\;{\beta}{\in}(0,{\infty})$$. If ${\alpha},{\beta}{\in}(0,1)$, then the kernel p(t, x) becomes the transition density of a Levy process delayed by an inverse subordinator. In this paper we provide the asymptotic behaviors and sharp upper bounds of p(t, x) and its space and time fractional derivatives $$D^n_x(-{\Delta}_x)^{\gamma}D^{\sigma}_tI^{\delta}_tp(t,x),\;{\forall}n{\in}{\mathbb{Z}}_+,\;{\gamma}{\in}[0,{\beta}],\;{\sigma},{\delta}{\in}[0,{\infty})$$, where $D^n_x$ x is a partial derivative of order n with respect to x, $(-{\Delta}_x)^{\gamma}$ is a fractional Laplace operator and $D^{\sigma}_t$ and $I^{\delta}_t$ are Riemann-Liouville fractional derivative and integral respectively.

Coherent Control of Autler-Townes Splitting in Photoelectron Spectroscopy: The Effect of Laser Intensity and Laser Envelope

  • Qin, Chaochao;Zhai, Hongsheng;Zhang, Xianzhou;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3294-3298
    • /
    • 2014
  • We theoretically investigated the coherent control of Autler-Townes splitting in photoelectron spectroscopy of K2 molecule within an ultrafast laser pulse by solving the time-dependent Schrodinger equation using a quantum wave packet method. It was theoretically shown that we can manipulate the splitting of photoelectron spectroscopy by altering the laser intensity. Furthermore, it was found that the percentages of each peak in photoelectron spectroscopy can be controlled by changing the envelope of the laser pulse.

Reconstruction of Dispersive Lamb Waves in Time Plates Using a Time Reversal Method

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.59-63
    • /
    • 2008
  • Time reversal (TR) of nondispersive body waves has been used in many applications including ultrasonic NDE. However, the study of the TR method for Lamb waves on thin structures is not well established. In this paper, the full reconstruction of the input signal is investigated for dispersive Lamb waves by introducing a time reversal operator based on the Mindlin plate theory. A broadband and a narrowband input waveform are employed to reconstruct the $A_0$ mode of Lamb wave propagations. Due to the frequency dependence of the TR process of Lamb waves, different frequency components of the broadband excitation are scaled differently during the time reversal process and the original input signal cannot be fully restored. This is the primary reason for using a narrowband excitation to enhance the flaw detectability.

A sensitivity analysis about reactive power according to the interconnection distance of wave-offshore hybrid generation system (복합발전 계통연계 시 보상장치 필요성 분석을 위한 거리에 따른 무효전력 민감성 분석)

  • Jung, Seungmin;Yoo, Yeuntae;Song, Sungyoon;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.251-252
    • /
    • 2015
  • The designed hybrid generation system (HGS) not only consider the voltage condition of grid connection point but also do reactive power support according to the transmission system operator's directions. The PCS operation plan in HGS should be supported by precise transferred quantity expectation about reactive power because the system has large physical areas and also be interconnected with grid through long transmission system. Therefore, the realistic measuring process about transferred reactive power quantity by utilizing HGS is required to consider additional compensation plan. In this paper, an reactive power transferred capability of HGS with expected parameter is analyzed, and imposed to the simulation process that is performed on EMTDC environment. Basically, grid information and system characteristics were utilized with Jeju island in Korea, and the performance analysis is carried out based on the composed layout in ongoing project.

  • PDF

A Study on Operation Scheduling for Interconnection Optimization (Interconnection 최적화를 위한 연산 스케쥴링에 관한 연구)

  • 신인수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.2
    • /
    • pp.40-45
    • /
    • 2002
  • In this paper, we deals with scheduling problem for data-path synthesis in high-level synthesis. We proposed a new method to optimize interconnection cost for operator allocation. Especially, we focus to optimize for buses to transfer data channel and register to restore operation result. Also we take account ILP formulation in order to get optimal scheduling result. To verify the effectiveness of this study, we select 5th Digital Wave Filter. The experimental result show that purposed method was better then the general methods.

  • PDF

A Study on the Improvement of the Motion Performance of Floating Marina Structures Considering Korea Coastal Environment (한국해양환경을 고려한 부유식 마리나 구조물의 운동성능 향상에 관한 연구)

  • Kim, Dong-Min;Heo, Sanghwan;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • The aim of this study was to improve the vertical motion performance of floating marina structures and to optimize the shapes of the structures for the Korea coastal environment. The floating body is connected to a plate-shaped submerged body through a connecting line under the water that has a stiff spring that serves to reduce the heave response. This system, which has two degrees of freedom, was modelled to analyze the interaction between the floating body and the submerged body. The vertical motion of the two-body system was compared with the motion of a single body to verify that the system could perform as an optimized model.

Adaptive backstepping control with grey theory for offshore platforms

  • Hung, C.C.;Nguyen, T.
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.159-172
    • /
    • 2022
  • To ensure stable performance, adaptive regulators with new theories are designed for steel-covered offshore platforms to withstand anomalous wave loads. This model shows how to control the vibration of the ocean panel as a solution using new results from Lyapunov's stability criteria, an evolutionary bat algorithm that simplifies computational complexity and utilities. Used to reduce the storage space required for the method. The results show that the proposed operator can effectively compensate for random delays. The results show that the proposed controller can effectively compensate for delays and random anomalies. The improved prediction method means that the vibration of the offshore structure can be significantly reduced. While maintaining the required controllability within the ideal narrow range.

Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

  • Wong, K.L.;Chuan, M.W.;Chong, W.K.;Alias, N.E.;Hamzah, A.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.209-221
    • /
    • 2019
  • Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

A SoC Design Synthesis System for High Performance Vehicles (고성능 차량용 SoC 설계 합성 시스템)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this paper, we proposed a register allocation algorithm and resource allocation algorithm in the high level synthesis process for the SoC design synthesis system of high performance vehicles We have analyzed to the operator characteristics and structure of datapath in the most important high-level synthesis. We also introduced the concept of virtual operator for the scheduling of multi-cycle operations. Thus, we demonstrated the complexity to implement a multi-cycle operation of the operator, regardless of the type of operation that can be applied for commonly use in the resources allocation algorithm. The algorithm assigns the functional operators so that the number of connecting signal lines which are repeatedly used between the operators would be minimum. This algorithm provides regional graphs with priority depending on connected structure when the registers are allocated. The registers with connecting structure are allocated to the maximum cluster which is generated by the minimum cluster partition algorithm. Also, it minimize the connecting structure by removing the duplicate inputs for the multiplexor in connecting structure and arranging the inputs for the multiplexor which is connected to the operators. In order to evaluate the scheduling performance of the described algorithm, we demonstrate the utility of the proposed algorithm by executing scheduling on the fifth digital wave filter, a standard bench mark model.