• Title/Summary/Keyword: wave load

Search Result 811, Processing Time 0.024 seconds

Relationship Between Amyloid Positivity and Sleep Characteristics in the Elderly With Subjective Cognitive Decline

  • Kyung Joon Jo;SeongHee Ho;Yun Jeong Hong;Jee Hyang Jeong;SangYun Kim;Min Jeong Wang;Seong Hye Choi;SeungHyun Han;Dong Won Yang;Kee Hyung Park
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.1
    • /
    • pp.22-29
    • /
    • 2024
  • Background and Purpose: Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognition and performance of daily activities. Recent studies have attempted to establish the relationship between AD and sleep. It is believed that patients with AD pathology show altered sleep characteristics years before clinical symptoms appear. This study evaluated the differences in sleep characteristics between cognitively asymptomatic patients with and without some amyloid burden. Methods: Sleep characteristics of 76 subjects aged 60 years or older who were diagnosed with subjective cognitive decline (SCD) but not mild cognitive impairment (MCI) or AD were measured using Fitbit® Alta HR, a wristwatch-shaped wearable device. Amyloid deposition was evaluated using brain amyloid plaque load (BAPL) and global standardized uptake value ratio (SUVR) from fluorine-18 florbetaben positron emission tomography. Each component of measured sleep characteristics was analyzed for statistically significant differences between the amyloid-positive group and the amyloid-negative group. Results: Of the 76 subjects included in this study, 49 (64.5%) were female. The average age of the subjects was 70.72±6.09 years when the study started. 15 subjects were classified as amyloid-positive based on BAPL. The average global SUVR was 1.598±0.263 in the amyloid-positive group and 1.187±0.100 in the amyloid-negative group. Time spent in slow-wave sleep (SWS) was significantly lower in the amyloid-positive group (39.4±13.1 minutes) than in the amyloid-negative group (49.5±13.1 minutes) (p=0.009). Conclusions: This study showed that SWS is different between the elderly SCD population with and without amyloid positivity. How SWS affects AD pathology requires further research.

Impedance-based Long-term Structural Health Monitoring for Jacket-type Tidal Current Power Plant Structure in Temperature and Load Changes (온도 및 하중 영향을 고려한 임피던스 기반 조류발전용 재킷 구조물의 장기 건전성 모니터링)

  • Min, Jiyoung;Kim, Yucheong;Yun, Chung-Bang;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.351-360
    • /
    • 2011
  • Jacket-type offshore structures are always exposed to severe environmental conditions such as salt, high speed of current, wave, and wind compared with other onshore structures. In spite of the importance of maintaining the structural integrity for offshore structure, there are few cases to apply structural health monitoring (SHM) system in practice. The impedance-based SHM is a kind of local SHM techniques and to date, numerous techniques and algorithms have been proposed for local SHM of real-scale structures. However, it still requires a significant challenge for practical applications to compensate unknown environmental effects and to extract only damage features from impedance signals. In this study, the impedance-based SHM was carried out on a 1/20-scaled model of an Uldolmok current power plant structure under changes in temperature and transverse loadings. Principal component analysis (PCA) was applied using conventional damage index to eliminate principal components sensitive to environmental change. It was found that the proposed PCA-base approach is an effective tool for long-term SHM under significant environmental changes.

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.

Estimation of Attenuation Relationship Compatible with Damping Ratio of Rock Mass from Numerical Simulation (수치해석을 통한 진동감쇠식 맞춤형 암반의 감쇠비 산정)

  • Kim, Nag Young;Ryu, Jae-Ha;Ahn, Jae-Kwang;Park, Duhee;Son, Murak;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.45-55
    • /
    • 2015
  • The stability of the adjcent structures or slopes under blasting is typically evaluated using an empirical vibration attenuation curve or dynamic numerical analysis. To perform a dynamic analysis, it is necessary to determine the blast load and the damping ratio of rock mass. Various empirical methods have been proposed for the blast load. However, a study on representative values of damping ratio of a rock mass has not yet been performed. Therefore, the damping ratio was either ignored or selected without a clear basis in performing a blast analysis. Selection of the dampring ratio for the rock mass is very difficult because the vibration propagation is influenced by the layout and properties of the rock joints. Besides, the vibration induced by blasting is propagated spherically, whereas plane waves are generated by an earthquake. Since the geometrical spreading causes additional attenuation, the damping ratio should be adjusted in the case of a 2D plane strain analysis. In this study, we proposed equivalent damping ratios for use in continuum 2D plane strain analyses. To this end, we performed 2D dynamic analyses for a wide range of rock stiffness and investigated the characteristics of blast vibration propagation. Based on numerical simulations, a correlation between the attenuation equation, shear wave velocity, and equivalent damping ratio of rock mass is presented. This novel approach is the first attempt to select the damping ratio from an attenuation relationship. The proposed chart is easy to be used and can be applied in practice.

Design Methodology on Steel-type Breakwater II. Pile Design Procedure (철재형 이안제 설계기법 연구 II. 하부기초 설계 단계)

  • Kwon, Oh-Kyun;Oh, Se-Boong;Kweon, Hyuck-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.219-228
    • /
    • 2011
  • In this paper, the design procedure of substructure of the steel-type breakwater was described and the actual foundation design was performed for the test bed. The site investigation was executed at the Osan-port area, in Uljin, Gyeongbuk, where the steeltype detached breakwater is constructed. The foundation mainly depends on the lateral load and uplift force due to the wave force. Since the superstructure is stuck out about 9.0m from the ocean bed, the foundation must resist on the lateral force and bending moment. After considering various factors, the foundation type of this structure was determined by the steel pipe pile(${\varphi}711{\times}t12mm$). On the stability of pile foundation, the safety factors of the pile on the compressive, lateral and uplift forces were grater than the minimum factor of safety. The displacements of pile under the working load were evaluated as the values below the permissible ones. Based on the subgrade reaction method, we evaluated the relationship of subgrade reaction and displacement for the lateral and the vertical directions in the layers. The structural analyses along with the foundation were perfomed and the effect of pile foundations were compared quantitatively.

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures against Beach Erosion II - Centering on the Development of Physics-Based Morphology Model for the Estimation of an Erosion Rate of Nourished Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 II - 양빈 된 해빈 침식률 산정을 위한 물리기반 해빈 지형모형 개발을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-333
    • /
    • 2019
  • In this study, a physics-based 3D morphology model for the estimation of an erosion rate of nourished beach is newly proposed. As a hydrodynamic module, IHFOAM toolbox having its roots on the OpenFoam is used. On the other hand, the morphology model comprised a transport equation for suspended sediment, and Exner type equation derived from the viewpoint of sediment budget with the bed load being taken to accounted. In doing so, the incipient motion of sediment is determined based on the Shields Diagram, while the bottom suspended sediment concentration, the bed load transport rate is figured out using the bottom shearing stress directly calculated from the numerically simulated flow field rather than the conventional quadratic law and frictional coefficient. In order to verify the proposed morphology model, we numerically simulate the nonlinear shoaling, breaking over the uniform beach of 1/m slope, and its ensuing morphology change. Numerical results show that the partially skewed, and asymmetric bottom shearing stresses can be successfully simulated. It was shown that sediments suspended and eroded at the foreshore by wave breaking are gradually drifted toward a shore and accumulated in the process of up-rush, which eventually leads to the formation of swash bar. It is also worth mentioning that the breaker bar formed by the sediments dragged by the back-wash flow which commences at the pinnacle of up-rush as the back-wash flow gets weakened due to the increased depth was successfully duplicated in the numerical simulation.

A Study on the Allowable Bearing Capacity of Pile by Driving Formulas (각종 항타공식에 의한 말뚝의 허용지지력 연구)

  • Lee, Jean-Soo;Chang, Yong-Chai;Kim, Yong-Keol
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.106-111
    • /
    • 2002
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulas proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. In the study, various static and dynamic formulas have been used in predicting the allowable bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the perdicted values with the static and dynamic load test measurements. Also, in most cases, these methods of pile bearing capacity determination do not take the time effect consideration, the actual allowable load as determined from pile load test indicates severe deviation from the design value. The principle results of this study are summarized as follows : As a result of estimate the reliability in criterion of the Davisson method, t was showed that Terzaghi & Peck >Chin>Meyerhof > Modified Meyerhof method was the most reliable method for the prediction of bearing capacity. Comparisons of the various pile-driving formulas showed that Modified Engineering News was the most reliable method. However, a significant error happened between dynamic bearing capacity equation was judged that uncertainty of hammer efficiency, characteristics of variable, time effect etc... was not considered. As a result of considering time effect increased skin friction capacity higher than end bearing capacity. It was found out that it would be possible to increase the skin friction capacity 1.99 times higher than a driving. As a result of considering 7 day's time effect, it was obtained that Engineering news, Modified Engineering News, Hiley, Danish, Gates, CAPWAP(CAse Pile Wave Analysis Program) analysis for relation, repectively, $Q_{u(Restrike)} / Q_{u(EOID)} = 0.98t_{0.1}$ , $0.98t_{0.1}$, $1.17t_{0.1}$, $0.88t_{0.1}$, $0.89t_{0.1}$, $0.97t_{0.1}$.

Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability (손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성)

  • KIM MI-KYUNG;AHN BYUNG-GUN;KIM JIN-WOOK;PARK IN-DUCK;AHN SEOK-HWAN;NAM KI-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF

Accelerated Life Testing and Validity Evaluation of Finger Strips Used for Electromagnetic Shielding Doors (전자파 차폐 도어용 핑거 스트립의 가속수명시험 및 유효성 평가)

  • Lee, Joo Hong;Kim, Do Sik;Chang, Mu Seong;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.831-837
    • /
    • 2015
  • Many persons and electronic devices are exposed to electromagnetic (EM) waves generated from magnetic resonance imaging (MRI) equipment, EM pulses (EMPs), and many other kinds of EM wave devices. Finger strips are used to provide shielding from these EM waves. Because of the high thermal conductivity of finger strips, they are used in the design of specialized doors that are installed in shielded rooms. In this study, we perform an accelerated life test using the load acceleration stress, which affects the main failure mode of finger strips. We predict the life of the finger strip under normal usage conditions based on the results of the accelerated life test. We compare the results with those predicted from the life test under normal usage conditions to evaluate the validity of accelerated life testing.

RF Collimator Design having Multi-Dielectric Structure using the Phase Field Design Method (페이즈필드 설계법을 이용한 다중 유전체 구조의 RF 콜리메이터 설계)

  • Go, Joohyun;Seong, Hong Kyoung;Kim, Hanmin;Park, Jinwoo;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • In this study, a collimator composed of multi-dielectric structures is designed using the phase field design method, a kind of topology optimization methods. It is also purposed to improve the mechanical-structural performance of a collimator by replacing previously used air regions with another dielectric material. Polypropylene and paraffin are selected as the dielectric materials for the design process taking manufacturability into account. The design objective is formulated by integrating the intensity of the electromagnetic field in the pre-determined target area to realize the collimating performance. The model for accurate numerical analysis was derived from the final result obtained from the design process through the simple cut-off method and it shows the improved performance of 105% compared with the free space wave propagation. For the designed model, the possibility of reverse transformation, the mechanical durability evaluation under the compression load, and the electromagnetic performance in the X-band range were also evaluated.