• Title/Summary/Keyword: wave heat sink

Search Result 13, Processing Time 0.019 seconds

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo;Nam, Dae-Hyun;Lee, Young-Joo;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

Fabrication of High Power InGaAs Diode Lasers (고출력 InGaAs레이저 다이오드 제작)

  • 계용찬;손낙진;권오대
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.79-86
    • /
    • 1994
  • Gain-guided broad-area single quantum well separate confinement heterostructure diode lasers have been fabricated from structures grown by metal organic vapor phase epitaxy. The active layer of the epi-structure is InGaAs emitting 962-965nm and the guiding layer GaAs. The channel width is fixed to 150${\mu}$m and the cavity length varys within the range of 300~800${\mu}$m. For uncoated LD's, the output power of 0.7W has been obtaained at a pulsed current level of 2A, which results about 60% external quantum efficiency. The threshold current density is 200A/cm$^{2}$ for the cavity lengths of 800.mu.m LD's. The stain effect upon the transparent current density has been observed. The internal quantum efficiency is expected to be 88% and the internal loss to be 18$cm^{-1}$. The beam divergence has been measured to be 7$^{\circ}$to lateral and 40$^{\circ}$to transverse direction. finally, 1.2W continuous-wave output power has been obtained at a current level of 2A for AR/HR coated LD's die-bonded on Cu heat-sink and cooled by TEC.

  • PDF