• Title/Summary/Keyword: wave function

Search Result 1,666, Processing Time 0.094 seconds

Field Measurements of Wave Directionality in Water of Finite Depth

  • Memos, Constantine;Ziros, Athanassios
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.437-446
    • /
    • 2003
  • Field measurements of directional waves were carried out during the summer of 2002 at two coastal sites in water of finite depth. A couple of general purpose instruments were used employing acoustic Doppler technology. The aim of the study was to investigate the spatial behavior of the directional movement of waves as they come ashore. In total,74 tests were carried out during which sea states of low to moderate intensity were recorded. A great number of these runs displayed bimodal characteristics of the spreading function at high frequencies. It was found that in general, the frequency-integrated directional width tends to broaden as the water shoals and when refraction effects are negligible. This is attributed to wave-wave interactions that become pronounced in shallow water. The same directional width showed, also, a tendency to increase with increasing peak frequency of the sea state spectrum. The behavior of the kurtosis of the spreading function was also examined. It was found that for higher frequencies this index tends to increase in wave spectra above a certain sea severity threshold.

THE DELTA STANDING WAVE SOLUTION FOR THE LINEAR SCALAR CONSERVATION LAW WITH DISCONTINUOUS COEFFICIENTS USING A SELF-SIMILAR VISCOUS REGULARIZATION

  • LI, XIUMEI;SHEN, CHUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1945-1962
    • /
    • 2015
  • This paper is mainly concerned with the formation of delta standing wave for the scalar conservation law with a linear flux function involving discontinuous coefficients by using the self-similar viscosity vanishing method. More precisely, we use the self-similar viscosity to smooth out the discontinuous coefficient such that the existence of approximate viscous solutions to the delta standing wave for the Riemann problem is established and then the convergence to the delta standing wave solution is also obtained when the viscosity parameter tends to zero. In addition, the Riemann problem is also solved with the standard method and the instability of Riemann solutions with respect to the specific small perturbation of initial data is pointed out in some particular situations.

Numerical Analysis of Waves Profiles coming with Oblique Angle to Permeable Submerged Breakwater on the Porous Seabed

  • Kim, Nam-Hyeong;Woo, Su-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.275-276
    • /
    • 2013
  • This analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and porous structures. Wave profiles coming with oblique angle to permeable submerged breakwater on the porous seabed are computed numerically by using boundary element method. When compared with the existing results for the oblique incident wave, the results of this study show good agreement. The results indicate that wave profiles own high dependability regarding the change of oblique incident waves and permeable submerged breakwater on the porous seabed. Therefore, the analysis method of this study are estimated to be applied as an accurate numerical analysis referring to oblique incident waves and permeable submerged breakwater on the porous seabed in real sea environment.

  • PDF

The Safety Assessment to Breakwater Systems by Placing Submarine Rectangular Trench (해저 Trench 설치에 의한 방파제 시스템의 안전성 평가)

  • Kim, Sung-Duk
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The present study is to estimate the effect of wave height affecting at the front face of breakwater systems, when a submarine trench is dredged in the distant offshore from outer breakwater. The wave diffraction field, which is important hydraulic factor in the ocean, is considered to be two dimensional(2D) plane and the configuration of the submarine trench on the sea bed designated by single horizontal long-rectangular system. The numerical simulation is performed by using Green function based on the boundary integral equation and meshed at moving boundary conditions. The results of present numerical simulations are illustrated by applying the normal incidence. It is shown that the ratios of wave height reduction at the front face of breakwater systems are approximately 20% by the effect of placing long trench on the sea bed. This study can effectively be utilized for safety assessment to various breakwater systems in the ocean field.

Joint inversion of receiver function and surface-wave phase velocity for estimation of shear-wave velocity of sedimentary layers (퇴적층들의 전단파 속도 평가를 위한 수신함수와 표면파 위상 속도의 통합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • In this study, we propose a joint inversion method, using genetic algorithms, to determine the shear-wave velocity structure of deep sedimentary layers from receiver functions and surface-wave phase velocity. Numerical experiments with synthetic data indicate that the proposed method can avoid the trade-off between shear-wave velocity and thickness that arises when inverting the receiver function only, and the uncertainty in deep structure from surface-wave phase velocity inversion alone. We apply the method to receiver functions obtained from earthquake records with epicentral distances of about 100 km, and Rayleigh-wave phase velocities obtained from a microtremor array survey in the Kanto Plain, Japan. The estimated subsurface structure is in good agreement with the previous results of seismic refraction surveys and deep borehole data.

Effect of Extracorporeal Shock-wave Therapy on Pain, Grip Strength, and Upper-extremity Function in Patients with Lateral Epicondylitis (체외충격파치료가 팔꿉관절 가쪽위관절염 환자의 통증과 악력 및 팔 기능에 미치는 영향)

  • Song, Min-Jeong;Kang, Tae-Woo;Kim, Beom-Ryong
    • PNF and Movement
    • /
    • v.18 no.1
    • /
    • pp.117-126
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the effects of extracorporeal shock-wave therapy (ESWT) on pain, grip strength, and upper-extremity function in patients diagnosed with lateral epicondylitis and to provide an effective intervention method for lateral epicondylitis. Methods: Twenty patients with lateral epicondylitis were randomly assigned to the ESWT group (n = 10) and the stretching exercise group (n = 10). Interventions in both groups were performed six times twice a week for three weeks. The visible analog scale (VAS) was used to measure pain change. A dynamometer was used to measure grip strength (GS). Patient-rated tennis elbow evaluation (PRTEE) was used to measure the upper-extremity function. Results: There were significant differences in pain, grip strength, and upper-extremity function in both groups before and after intervention (p < 0.05). There were also significant differences in pain, grip strength, and upper-extremity function between the groups after intervention (p < 0.05). Conclusion: This study showed very positive improvement in pain, grip strength, and upper-extremity function after ESWT in patients with lateral epicondylitis. Therefore, ESWT can be recommended for patients with lateral epicondylitis.

A Study on Mathematical Modeling of Forcing Function for the Piping Vibration of Petrochemical Plant Design (플랜트 설계 시 배관진동을 유발하는 가진 함수의 수학적 모델링)

  • 민선규;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.591-595
    • /
    • 1997
  • In analysis of piping vibration of petrochemical plant, the forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used for the system with rotary equipments. Mechanical driving frequencies, wave functions, and response spectrum are used for reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, for the spray injection case inside the pipe, forcing function was modeled, in which two different fluids are distributed uniformly. To confirm the results, the scheme used for the forcing function was applied for real piping system. The vibration mode of the real system was consistent with the 4th mode obtained by simulation using the forcing function formulated in this study.

  • PDF

Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium

  • Kakar, Rajneesh
    • Interaction and multiscale mechanics
    • /
    • v.6 no.3
    • /
    • pp.287-300
    • /
    • 2013
  • In this paper, the effect of impulsive line on the propagation of shear waves in non-homogeneous elastic layer is investigated. The rigidity and density in the intermediate layer is assumed to vary quadratic as functions of depth. The dispersion equation is obtained by using the Fourier transform and Green's function technique. The study ends with the mathematical calculations for transmitted wave in the layer. These equations are in complete agreement with the classical results when the non-homogeneity parameters are neglected. Various curves are plotted to show the effects of non-homogeneities on shear waves in the intermediate layer.

Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes (다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산)

  • 홍기용;에스똘히오메자
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

Wave Deformation by Large Cylindrical Structures (근접설치된 대형구조물에 의한 구조물주변의 파의 변형)

  • 김창제;김정렬
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.2
    • /
    • pp.61-67
    • /
    • 1995
  • This study examines experimentally and theoretically, the wave deformation by two large cylindrical structure in relation to the case of one structure. The wave height around the structures varies, according to the changes of the incident wave angles, the number of the structure, and the distances between the two structures. The wave deformation around the large cylindrical structures is shown to be well predicted theoretically by the diffraction theory based on the singular point distribution method using a vertical line wave source Green's function.

  • PDF