• Title/Summary/Keyword: wave function

Search Result 1,672, Processing Time 0.03 seconds

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH STRONG DAMPING AND VARIABLE-EXPONENT NONLINEARITY

  • Park, Sun-Hye
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.633-642
    • /
    • 2021
  • In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.

Directional Wave Generation in the Navier-Stokes Equations Using the Internal Wave Maker (Navier-Stokes 방정식 모형의 경사지게 입사하는 파랑 내부조파)

  • Ha, Tae-Min;NamGung, Don;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.545-555
    • /
    • 2012
  • A numerical modeling has become increasingly popular and more important to the study of water waves with a rapid advancement of computer technology. However, different types of problems are induced during simulating wave motion. One of the key problems is re-reflection to a computation domain at the incident boundary. The internal wave generating-absorbing boundary conditions have been commonly used in numerical wave models to prevent re-reflection. For the Navier-Stokes equations model, the internal wave maker using a mass source function of the continuity equation has been used to generate various types of waves. Nonetheless, almost every numerical experiment is performed in two dimensions and only a few tests have been expanded to three dimensions. More recently, a momentum source function of the Boussinesq equations is applied to generate essentially directional waves in the three dimensional Navier-Stokes equations model. In this study, the internal wave maker using a momentum source function is employed to generate targeted linear waves in the three-dimensional LES model.

Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • 박종천;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

Basic Experiment for Lamb Wave Focusing by Phased Magnetostrictive Transducers in a Plate (자기변형 트랜스듀서의 위상차를 이용한 평판에서의 Lamb파 집속 기초 실험)

  • Lee, Joo-Kyung;Kim, Hoe-Woong;Lee, Ho-Cheol;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • The ultrasonic guided wave phased array using magnetostrictive patch transducers is proposed. The magnetostrictive transducer has received much attention because it is cost-effective and capable to generate ultrasonic waves with a simple configuration. However, it has not been used for ultrasonic guided wave phased array applications until now. In this paper, we propose a magnetostrictive transducer based phased array system consisting of a multi-channel function generator, power amplifiers and Lamb wave magnetostrictive transducers. To check the performance of the ultrasonic guided wave phased array, several Lamb wave focusing experiments were carried out in an aluminum plate. The results demonstrated the capability of the developed array to focus the Lamb waves at specific target points.

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

Development of Linear Actuator Using Surface Acoustic Wave (표면 탄성파를 이용한 선형 구동기의 개발)

  • Kim, Jae-Geun;Lim, Soo-Cheol;Lee, Taek-Joo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.852-855
    • /
    • 2008
  • In this paper, we proposed a new type's PZT actuator using surface acoustic wave. This actuator uses Rayleigh wave as an operational traveling wave. For the development of the actuator, each components of surface acoustic wave motor like PZT substrate, slider and IDT was studied theoretically and fabricated. For the measurement of transfer function of PZT substrate and operation of surface acoustic wave motor, network analyzer and 13.56MHz RF generator were used. Also the model which expresses the driving characteristic best was suggested and simulation was executed for the suggested model. And the future research works for improvement of SAW actuator was suggested.

  • PDF

Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • Park, Jong-Chun;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

Influence of a Structure by the Submerged Breakwater and the Porous Wave Absorber (수중방파제와 다공성 소파장치가 구조물에 미치는 영향)

  • Park, Jin-Ho;Jung, Tae-Hwa;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.225-228
    • /
    • 2008
  • There are many studies about submerged structures or porous wave absorbers to decrease damage of coast and structures. Submerged structures and porous wave absorber are decreasing energy of incoming wave by reflecting or dissipation with changing depth or with porous rubble mound. This study addresses the reflection and transmission of long wave from a trapezoidal breakwater and a vertical porous wave absorber at the same time. A systematic shape transfer is derived to determine wave reflection and transmission. And periodic solutions are matched at the slope and the front face of the absorber by assuming continuity of pressure and mass. The transmission coefficient is determined as a function of parameters describing the incoming waves, transmitting waves through the trapezoidal breakwater and the absorber characteristics.

  • PDF

Evaluation of Parameter Characteristics of the Storage Function Model Using the Kinematic Wave Model (운동파모형을 이용한 저류함수법 매개변수의 특성 평가)

  • Choi, Jong-Nam;Ahn, Won-Shik;Kim, Hung-Soo;Park, Min-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.95-104
    • /
    • 2010
  • The storage function model is one of the most commonly used models for flood forecasting and warning system in Korea. This paper studies the physical significance of the storage function model by comparing it with kinematic wave model. The results showed universal applicability of the storage function model to Korean basins. Through a comparison of the basic equations for the models, the storage function model parameters, K, P and $T_l$, are shown to be related with the kinematic wave model parameters, k and p. The analysis showed that P and p are identical and K and $T_l$ can be related to k, basin area, and coefficients of Hack's law. To apply the storage function model throughout the southern part of Korean peninsular, regional parameter relationships for K and $T_l$ were developed for watershed area using data from 17 watersheds and 101 flood events. These relationships combine the kinematic wave parameters with topographic information using Hack's Law.

Numerical Analysis of Three-Dimensional Wave Transformation of Floating Breakwater Moored by Catenary (Catenary 계류된 부방파제의 3차원 파랑변형에 관한 수치해석)

  • KIM DO-SAM;CHOI NACK-HOON;YOON HEE-MYUN;SON BYOUNG-KYU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.241-248
    • /
    • 2004
  • In general, the salient features if the floating breakwater have excellent regulation of sea-water keeping the marine a1ways clean, up and dorm free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth, This study discusses the three dimensional wave transformation of the floating breakwater moored by catenary. Numerical method is based at the Green function method and eigenfunction expansion method. The validity of the present is confirmed by comparing it with the result of Ijima et a1.(1975) fer tensile maxed floating breakwater. According to the numerical results, drift and width of the floating breakwater affect at the wave transformation greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater.

  • PDF